

September 22nd, 2021

Advanced Glass Up-Cycling by Alkali Activation

FunGlass

Miroslava Hujova¹, Akansha Mehta¹, Dusan Galusek¹, Paolo Colombo² and <u>Enrico Bernardo²</u>

¹FunGlass, Alexander Dubcek University of Trencin, Slovakia ²Advanced Ceramics and Glasses group, Department of Industrial Engineering,University of Padova, Italy

Introduction

Main goal: exploration of glass for IPs New generation of binders, alternative to conventional cements

 Binders for the building industry (e.g. Portland cement) generally having a significant environmental impact

Gelation feasible at room temperature, but high temperature processing needed for the synthesis

 Interesting replacement offered by inorganic polymers, i.e. gels typically achieved by low temperature dissolution of alumino-silicate raw materials, in alkaline environment, followed by condensation reactions
 Demanding synthesis step still applied, for raw material preparation and/or definition of activating solution (e.g. alkali silicates)

This paper aims at:

- Confirming the potential of 'waste glass' as 'active' component of mixtures yielding IPs
- Defining products with different functionalities

Unrecyclable glasses: a key example

Some glasses cannot be conveniently recycled Strict requirements on chemical purity impose always 'virgin' raw materials

Data in wt%

Oxides	SL glass	BS glass
SiO ₂	71.6	72
Al ₂ O ₃	1.0	7
Na ₂ O	13.5	6
K ₂ O	0.4	2
MgO	3.9	
CaO	9.0	1
B ₂ O ₃		12
Fe ₂ O ₃	0.1	
TiO ₂		
SrO		
others	0.5	
L.O.I.		

SL: Partially unrecyclable (highly contaminated fractions) BS: Fully Unrecyclable Images and glass cullet courtesy of Stevanato Group (Padova, Italy)

[https://www.stevanatogroup.com/]

True recycling unfeasible according to:

- Strict control of chemical composition and quality
- Industrial approach: glass pre-formed in form of tubes in one plant [Danner process] later transformed in another plant → cullet hardly transported to primary manufacturer

Our approach

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Valorization of discarded glass of any type Attention to technologies not conditioned by the purity

New glass-based engineering products

Key mission for the Advanced Ceramics & Glasses group, also in the framework of **European Projects**

GIaCERCo 2010-2014 **CoACH 2014-2018** New-MINE 2016-2020 FunGLASS 2017-2024

Down-cycling Savings from glass as alternative raw material (replacing minerals)

Traditional ceramics (bricks, stoneware tiles) may include glass in the formulation

Up-cycling Savings from glass as alternative raw material (replacing

+ Added value

minerals)

Sustainable Up-Cycling: no-firing option No secondary thermal process, products exploited for the replacement of energy-intensive construction materials (e.g. conventional cement)

First attempts to 'unfired' products Geopolymers from extensive use of glass Collaboration with Prof. A.R. Boccaccini (University of Erlangen, Germany)

Extensive glass reuse

- FA (coal combustion) as 'usual' SiO₂/Al₂O₃ provider
- (Container) soda lime glass [SLG] providing BOTH SiO₂ AND alkali [Na₂O]
- Activation with NaOH solution [5-8-10 M]

Mixtures designed to lead to:

SiO ₂ /Al ₂ O ₃	= 5	\rightarrow FA/SLG = 76/24
SiO ₂ /Al ₂ O ₃	= 6	\rightarrow FA/SLG = 64/36
SiO ₂ /AI ₂ O ₃	= 7	\rightarrow FA/SLG = 54/46

Chemical composition of raw materials (wt%) determined by XRF.

wt%	SiO ₂	Al_2O_3	Na ₂ O	K ₂ O	CaO	MgO	Fe ₂ O ₃	TiO ₂
FA	54.36	24.84	0.83	3.03	2.56	2.06	8.28	1.07
SLG	70.5	3.2	12	1	10	2.3	0.42	0.07

Contents lists available at ScienceDirect Construction and Building Materials

Construction and Building Materials 188 (2018) 1077-1084

Extensive reuse of soda-lime waste glass in fly ash-based geopolymers

N. Toniolo^a, A. Rincón^b, J.A. Roether^c, P. Ercole^d, E. Bernardo^{b,*}, A.R. Boccaccini^{a,*}

^a Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany ^b Department of Industrial Engineering, University of Padova, Via Marzolo 9, Italy ^c Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany

⁻ Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany ^d Sasil S.p.a, Regione Dosso, 13862 Brusnengo, Bl, Italy

Research carried out in the framework of European Community's H2020 MSCA-ITN 'CoACH-ETN', g.a. #642557 http://www.coach-etn.eu/

Idea: Avoiding alkali silicates

- Useful in enhancing the SiO₂/Al₂O₃ ratio
- Expensive, since they imply a preliminary melting stage (and dissolution → 'water glass')

First attempts to 'unfired' products Geopolymers from extensive use of glass

Collaboration with Prof. A.R. Boccaccini (University of Erlangen, Germany)

Key points of Geopolymers

- Condensation of alumino-silicate hydrated 'oligomers' [poly-sialates]
- Oligomers from alkali activation of alumino-silicate compounds [dissolution in alkali or alkali-silicate aq. solutions]
- Stable structures [e.g. resisting boiling tests] for (amorphous or semi-crystalline) zeolite-like structures: [SiO₄] tetraedra mixed with [AlO₄] tetrahedra
- [AIO₄] tetrahedra stabilized by alkali ions

Chemical composition of raw materials (wt%) determined by XRF.

wt%	SiO ₂	Al_2O_3	Na ₂ O	K ₂ O	CaO	MgO	Fe ₂ O ₃	TiO ₂
FA	54.36	24.84	0.83	3.03	2.56	2.06	8.28	1.07
SLG	70.5	3.2	12	1	10	2.3	0.42	0.07

Contents lists available at ScienceDirect Construction and Building Materials SEVIER journal homepage: www.elsevier.com/locate/conbuildmat

Construction and Building Materials 188 (2018) 1077-1084

Extensive reuse of soda-lime waste glass in fly ash-based geopolymers

N. Toniolo^a, A. Rincón^b, J.A. Roether^c, P. Ercole^d, E. Bernardo^{b,*}, A.R. Boccaccini^{a,*}

^a Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany ^b Department of Industrial Engineering, University of Padova, Via Marzolo 9, Italy ^c Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany ^d Sasil S.p.a, Regione Dosso, 13862 Brusnenzo, BI, Italy

> Research carried out in the framework of European Community's H2020 MSCA-ITN 'CoACH-ETN', g.a. #642557 http://www.coach-etn.eu/

Idea: Avoiding alkali silicates

- Useful in enhancing the SiO_{2l}Al₂O₃ ratio
- Expensive, since they imply a preliminary melting stage (and dissolution → 'water glass')

First attempts to 'unfired' products

Geopolymers from extensive use of glass Collaboration with Prof. A.R. Boccaccini (University of Erlangen, Germany)

Extensive glass reuse

- FA (coal combustion) as 'usual' SiO₂/Al₂O₃ provider
- (Container) soda lime glass [SLG] providing BOTH SiO₂ AND alkali [Na₂O]
- Activation with NaOH solution [5-8-10 M]

Mixtures designed to lead to:

SiO_2/AI_2O_3	= 5	\rightarrow FA/SLG = 76/24
SiO ₂ /Al ₂ O ₃	= 6	\rightarrow FA/SLG = 64/36
SiQ ₂ /Al ₂ Q ₂	= 7	\rightarrow FA/SLG = 54/46

- Fine powders (FA<20 µm, SLG<30 µm)
- 4h dissolution (solid/liquid=0.45), under mechanical stirring
 - Curing 48 h at 60 °C

First attempts to 'unfired' products

Geopolymers from extensive use of glass Collaboration with Prof. A.R. Boccaccini (University of Erlangen, Germany)

Stabilization of heavy metals

Element (ppm)	As	Cd	Cr	Cu	Мо	Pb	Se	Zn
6S5M	0.174	0.007	0.0251	0.11	0.363	0.1	0.038	< 0.203
6S8M	0.134	0.004	0.0101	0.115	0.143	0.078	0.048	< 0.203
FA	< 0.049	< 0.002	0.467	0.028	0.898	< 0.047	0.022	<0.2
SLG	< 0.049	0.001	0.043	0.036	0.007	0.018	0.018	0.088
Inert material	0.5	0.04	0.5	2	0.5	0.5	0.1	4
Non-hazardous material	2	1	10	50	10	10	0.5	50

Mixtures designed to lead to:

 $SiO_2/Al_2O_3 = 5 \rightarrow FA/SLG = 76/24$

 $SiO_2/AI_2O_3 = 6 \rightarrow FA/SLG = 64/36$

 $SiO_2/AI_2O_3 = 7 \rightarrow FA/SLG = 54/46$

Best: evidence of reaction, higher compaction (density 1.93 ± 0.01 g/cm³, porosity 17 vol%) Stable compressive strength (>45 MPa, after 7 and 28 days)

FunGlass approach

Recovery of experiences on geopolymers from reactive silica Waste glass as reactive silica, combined with Na aluminate

Instead of

Reactive SiO_2/Al_2O_3 raw material + (Na_2O or Na_2O/SiO_2) activator \rightarrow GP

'Alternative approach' to geopolymers:

Reactive SiO₂ raw material + (Na₂O/Al₂O₃) activator \rightarrow GP E.g. silica fume, rice husk ash, microsilica [=agricultural or industrial waste] Fundamental papers by K.J. MacKenzie and collaborators [Victoria University of Wellington, NZ] G. Gluth & C. Jäger and collaborators [BAM, Berlin, Germany]

e.g. Brew et al., J. Mat . Sci. **42**, 3990–93 (2007) Greiser et al., RSC Advances **8**(70), 40164-71 (2018)

This paper:

Fine soda-lime glass as SiO₂ precursor

 \rightarrow Attention: SLG actually providing also Na₂O!

Activation by means of aquous solution of commercial NaAlO₂

Starting solution: 45 wt % NaAlO₂ in distilled water; slow mixing at room temperature for 30 min

FunGlass approach

Recovery of experiences on geopolymers from reactive silica Waste glass as reactive silica, combined with Na aluminate

Overall

= 0.31

Starting solution:

45 wt % NaAlO₂ (Sigma Aldrich, Gillingham, UK); slow mixing at room temperature for 30 min

Route #1

- Fine powder of SLG (30 μ m in size) cast in NaAlO₂ solution, in a proportion 50/50 wt %
- Mixing for 3h, under the low speed mechanical stirring (300 rpm)
- Casting in PS moulds and curing at 75 °C, 7 days **Route #2: preliminary acid leaching**
- Fine powder of SLG (30µm in size) cast in distilled water; pH = 5 by addition of concentrated HCI solution
- 3h leaching (pH monitored and kept ~ 5 by periodical dropwise addition of HCI solution)
- Washing and centrifugation in distilled water (6 cycles) + drying at 40 °C, overnight
- Fine powder of treated SLG cast in NaAIO₂ solution, in a proportion 50/50 wt %
- Mixing for 3h, under the low speed mechanical stirring (300 rpm)
- Casting in PS moulds and curing at 75 °C, 7 days

Preliminary test: survival in boiling water [30 min; 4g in 50 cl] \rightarrow No disintegration, no dissolution

FunGlass approach

'Extra' Na⁺ removed

Recovery of experiences on geopolymers from reactive silica Waste glass as reactive silica, combined with Na aluminate

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

1222+2022

Na Na⁺ Si

Acid leaching: protons replacing Na⁺ Additional treatment, but it may be applied to recover metals (e.g. lamps, PV panels)

Hydrated silica expected to react with the activating solution (gelation with Na⁺ just from solution)

Results: mineralogy No acid leaching: semi-crystalline material Hydrosodalite + Zeolite LTA

2theta

Results: mineralogy

Acid leaching: semi-crystalline material again, but different Hydrosodalite (reduced) + Zeolite LTA (enhanced)

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

1222+2022

Acid leaching: semi-crystalline material again, but different Comparison with reference

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

1222+2022

Interesting comparison with 'Geopolymerzeolite composites' from NaAlO₂ and silica waste (from chlorosilane production) Greiser et al. Ceram. Int. 43(2), 2202-8 (2017)

Evidence of abundant 'binding phase' Significant dissolution of glass powders, with some differences

mag spot vac mode 800 x 4.0 Low vacuum WD ΗV det 800 x 20.00 kV Low vacuum LFD 16.1 mm SL 80

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

1222 • 2022

SLG with no treatment: well recognizable former glass granules Binding phase 'attached' to glass particles

SLG after leaching: binding phase integrated at the surface

Results: morphology

Evidence of abundant 'binding phase' Significant dissolution of glass powders, with some differences

BANNI CONTRACTOR

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

SLG with no treatment: well recognizable former glass granules Binding phase 'attached' to glass particles SLG after leaching: binding phase integrated at the surface: texturing

Hypothesis of integration of gel with hydrated silica layer available after leaching

ilica lay leachir	rer ng		0
		E	S.
			E
			C
20.00 kV 2 00	0 x 4.0 Low vacui	im LFD 18.1 mm	

Results: ²⁷AI NMR analysis

Evidence of gelation: Al ions in tetrahedral coordination Preliminary treatment of glass powders affecting the structure of the gel

Università degli Studi

DI PADOVA

- No signal attributable to unreacted NaAlO₂ (δ~80 ppm)
- Some signal consistent with AI^{VI} in materials from not treated SLG (AIO₆ from minor amounts of AI(OH)₃)

Brew et al., J. Mat . Sci. 42, 3990-93 (2007)

 Some signals consistent with Al^V in both materials (δ~74 ppm) Walkley et al., J. Phys. Chem. C 122, 5673–85 (2018)

More intestingly, for Al^{IV}:
Exchange of main peak and shoulderNot treated $\delta \sim 61$ ppm [shoulder at ~ 58]
*less ordered AlO₄ units*Walkley et al., J. Phys. Chem. C 122, 5673–85 (2018)Treated $\delta \sim 58$ ppm [shoulder at ~ 61]
Greiser et al., RSC Advances 8(70), 40164-71 (2018)

Results: ²⁹Si NMR analysis

Confirmation of the structural changes Preliminary treatment of glass powders affecting the gel

Interesting match with assignements from the literature Greiser et al., RSC Advances 8(70), 40164-71

reiser et al., RSC Advances **8**(70), 40164-71 (2018)

 $\delta \sim$ -86 ppm (not treated):

hydrosodalite

 $\delta \sim$ -89 ppm (treated): zeolite LTA

Results: ²⁹Si NMR analysis

Confirmation of the structural changes Preliminary treatment of glass powders affecting the gel

Crushed gels left in distilled water Sudden alkalinization with not treated glass

Gels crushed <2 mm Cast in distilled water (35% solid loading) Room temperature

Different stabilization of sodium ions Effect detected also by simple hand contact

13 12 11 10 Hq treated 9 not treated 8 7 6 ++ 10 100 1000 Time (s)

Glass-based gels comparable with concrete products Modulus of Rupture (M.O.R.)

UNIVERSITÀ

DEGLI STUDI

DI PADOVA

1222+2022

Basic mechanical characterization

Glass-based gels comparable with concrete products Elastic modulus

Extension: dilution with coarse glass

Glass-based concrete: enhancing sustainability 50wt% coarse glass added

Binder from Acid Treated glass, polished surface

Coarse glass fragments (crushed and sieved in the interval: 300-1400 µm) added as filler

Binder from Acid Treated glass, fracture surface: coarse fragments coated by gel

Crack passing at the interface, but mostly remaining in the gel

Overall NaAlO₂/SLG passing from 0.31 to 0.14 [0.31 g NaAlO₂/ 1g fine SLG/1.31 g coarse SLG]

Università degli Studi di Padova

Extension: dilution with coarse glass

Glass-based concrete: enhancing sustainability 50wt% coarse glass added

Also 'free' glass surfaces showing some interaction with the binder

Extensions

Are there more 'geopolymer-oriented' waste glasses than SLG? Can be activation 'lighter' and simpler? Can we get products with extended functionalities?

Changing glass Back to pharmaceutical glass Interesting for the content of B_2O_3 and AI_2O_3

Data in wt%

Oxides	SL glass	BS glass
SiOa	71.6	72
Al ₂ O ₃	1.0	7
Na ₂ O	13.5	6
K ₂ O	0.4	2
MgO	3.9	
CaO	9.0	1
B ₂ O ₃		12
Fe ₂ O ₃	0.1	
TiO ₂		
SrO		
others	0.5	
L.O.I.		

Glass courtesy of Nuova Ompi – Stevanato Group (Padova, Italy) N-A-S-H gel verified also in 'weak' aqueous solutions containing 2.5 M NaOH

	Â
ţ	
	0

trapping Na⁺ ions [in gel, confirmed

even after firing at 800 °C]

Glass foams

Mechanical foaming of alkali activated suspensions Tuning with surfactant

Università degli Studi di Padova

Mechanical foaming of alkali activated suspensions Consolidation with surfactant

materials

Article

Extension of the 'Inorganic Gel Casting' Process to the Manufacturing of Boro-Alumino-Silicate Glass Foams

Enhancing sustainability Reduced surfactant content and temperature, even at T_g

Surfactant (%)		4	
Sintering Temperature (°C)	700		Green
ρ _{geom} (g/cm ³)	$\begin{array}{c} 0.87 \\ \pm 0.03 \end{array}$		$\begin{array}{c} 0.58 \\ \pm 0.02 \end{array}$
ρ _{apparent} (g/cm ³)	$\begin{array}{c} 1.88 \\ \pm \ 0.05 \end{array}$		$\begin{array}{c} 2.31 \\ \pm 0.02 \end{array}$
ρ _{true} (g/cm ³)	$\begin{array}{c} 0.38 \\ \pm 0.03 \end{array}$		$\begin{array}{c} 0.25 \\ \pm 0.02 \end{array}$
Total Porosity (vol %)	61.6		75.1
Open Porosity (vol %)	53.7		74.8
Closed Porosity (%)	7.9		0.3
σ comp (MPa)	6.7 ± 0.4		0.5 ± 0.1

UNIVERSITÀ

DEGLI STUDI

di Padova

1222 • 2022

Foams in the green state are weak Consolidation after firing

Enhancing sustainability Reduced surfactant content and temperature, even at T_g

Surfactant (%)	4				
Sintering Temperature (°C)	700	650	550	Green	
ρ _{geom} (g/cm ³)	$\begin{array}{c} 0.87 \\ \pm 0.03 \end{array}$	$\begin{array}{c} 0.70 \\ \pm 0.03 \end{array}$	0.54 ± 0.03	$\begin{array}{c} 0.58 \\ \pm 0.02 \end{array}$	
ρ _{apparent} (g/cm ³)	$\begin{array}{c} 1.88 \\ \pm \ 0.05 \end{array}$	2.17 ± 0.03	2.38 ± 0.04	2.31 ± 0.02	
ρ _{true} (g/cm ³)	$\begin{array}{c} 0.38 \\ \pm 0.03 \end{array}$	$\begin{array}{c} 0.30 \\ \pm 0.04 \end{array}$	$\begin{array}{c} 0.23 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 0.25 \\ \pm \ 0.02 \end{array}$	
Total Porosity (vol %)	61.6	69.3	77.4	75.1	
Open Porosity (vol %)	53.7	67.7	77.2	74.8	
Closed Porosity (%)	7.9	1.7	0.2	0.3	
σ comp (MPa)	6.7 ± 0.4	3.9 ± 0.4	0.8 ± 0.2	0.5 ± 0.1	

Foams in the green state are weak Consolidation after firing at lower temperature: gel binder transforming into low-softening glass

From glass foams to...

Enhancing sustainability Reduced surfactant content and temperature, even at T_g

Surfactant (%)		4				2		
Sintering Temperature (°C)	700	650	550	Green	650	550	Green	
ρ _{geom} (g/cm ³)	$\begin{array}{c} 0.87 \\ \pm 0.03 \end{array}$	$\begin{array}{c} 0.70 \\ \pm 0.03 \end{array}$	0.54 ± 0.03	$\begin{array}{c} 0.58 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.77 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 0.64 \\ \pm 0.04 \end{array}$	$\begin{array}{c} 0.57 \\ \pm 0.03 \end{array}$	
ρ _{apparent} (g/cm ³)	$\begin{array}{c} 1.88 \\ \pm \ 0.05 \end{array}$	2.17 ± 0.03	2.38 ± 0.04	$\begin{array}{c} 2.31 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 2.08 \\ \pm \ 0.04 \end{array}$	2.36 ± 0.05	2.32 ± 0.04	
ρ _{true} (g/cm ³)	$\begin{array}{c} 0.38 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 0.30 \\ \pm 0.04 \end{array}$	0.23 ± 0.03	$\begin{array}{c} 0.25 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.34 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 0.27 \\ \pm \ 0.04 \end{array}$	$\begin{array}{c} 0.24 \\ \pm \ 0.02 \end{array}$	
Total Porosity (vol %)	61.6	69.3	77.4	75.1	66.4	78.9	76.0	
Open Porosity (vol %)	53.7	67.7	77.2	74.8	62.8	78.8	75.4	
Closed Porosity (%)	7.9	1.7	0.2	0.3	3.6	0.1	0.6	
σ comp (MPa)	6.7 ± 0.4	3.9 ± 0.4	$\begin{array}{c} 0.8 \\ \pm \ 0.2 \end{array}$	$\begin{array}{c} 0.5 \\ \pm \ 0.1 \end{array}$	2.1 ± 0.2	$\begin{array}{c} 0.7 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.7 \\ \pm \ 0.1 \end{array}$	

Confirmation with lower surfactant content

Enhanced strength with no foaming Attention to binding phase

Surfactant (%)	4				No surfactant		
Sintering Temperature (°C)	700	650	550	Green	650	550	Green
ρ _{geom} (g/cm ³)	$\begin{array}{c} 0.87 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 0.70 \\ \pm \ 0.03 \end{array}$	0.54 ± 0.03	$\begin{array}{c} 0.58 \\ \pm \ 0.02 \end{array}$	$\begin{array}{c} 1.49 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 1.41 \\ \pm 0.03 \end{array}$	$\begin{array}{c} 1.45 \\ \pm \ 0.04 \end{array}$
ρ _{apparent} (g/cm ³)	$\begin{array}{c} 1.88 \\ \pm \ 0.05 \end{array}$	2.17 ± 0.03	2.38 ± 0.04	$\begin{array}{c} 2.31 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 2.01 \\ \pm \ 0.03 \end{array}$	2.19± 0.03	$\begin{array}{c} 2.38 \\ \pm \ 0.03 \end{array}$
ρ _{true} (g/cm ³)	$\begin{array}{c} 0.38 \\ \pm \ 0.03 \end{array}$	$\begin{array}{c} 0.30 \\ \pm 0.04 \end{array}$	0.23 ± 0.03	$\begin{array}{c} 0.25 \\ \pm \ 0.02 \end{array}$	0.59 ± 0.05	$\begin{array}{c} 0.65 \\ \pm \ 0.05 \end{array}$	$\begin{array}{c} 0.61 \\ \pm \ 0.04 \end{array}$
Total Porosity (vol %)	61.6	69.3	77.4	75.1	41.2	34.7	39.0
Open Porosity (vol %)	53.7	67.7	77.2	74.8	31.3	31.9	39.0
Closed Porosity (%)	7.9	1.7	0.2	0.3	9.9	2.8	0.0
σ comp (MPa)	6.7 ± 0.4	3.9 ± 0.4	0.8 ± 0.2	0.5 ± 0.1	19.4 ± 0.4	16.4 ± 0.5	24.4 ± 0.6

Green, unfoamed Gel binding particles

No foaming: more contact

Fired at 550°C No flow of glass, just transformation of gel

Enhanced strength with no foaming Attention to binding phase

No flow of glass, just transformation of gel

 IV
 mag
 WD
 det
 pressure
 spot

 00 kV 800 x 13.5 mm
 DualBSD 0.524 Torr
 4.0

Enhanced strength with no foaming Attention to binding phase

Application in Dye Removal from Water Model Dye: Methylene Blue, Initial concentration: 10mg/mL

Enhanced strength with no foaming Attention to binding phase

Application in Dye Removal from Water Model Dye: Methylene Blue, Initial concentration: 10mg/mL **Reusable sorbents [1 cycle: 80 min adsorption + dye** extraction by centrifugation]

5

Back to SLG

BSG 'naturally' prone to zeolitization But SLG can be combined with Al_2O_3 rich waste...

Chemical Component	Rock Wool (F
CaO	17.4
SiO ₂	40.4
Al_2O_3	15.8
Fe ₂ O ₃	9.2
Na ₂ O	1.4
K ₂ O	0.4
MgO	12.6
P_2O_5	0.1
TiO ₂	0.8
SO_3	n.d
Cl	n.d

J. Yliniemi et al., Utilization of Mineral Wools as Alkali-Activated Material Precursor. *Materials* 9 (2016) 312.

Raw materials: 50 wt% SLG, 50 wt% RW (all amorphous) RW) In solution 3M NaOH (30 min), 3d at 75 °C Liq/Sol=0.53 Activation: formation of zeolites Sodalite (Na-based) and Gismondine (Ca-based) Intensity 1000 Experimental pattern: 12 04 B Rocwool Glass WT 3M NaOH 75C 72H SS2 (b.raw [00-040-1464] Na3.6 Al3.6 Si 12.4 O32 *14 H2 O Sodium Aluminum Silicate Hydrate 950 [00-020-0452] Ca Al2 Si2 O8 *4 H2 O Calcium Aluminum Silicate Hydrate (Gi 900 850 800 750 700 650 600 550 500 450 400 350 300 250 -200 150 100 50 11 TT TTT 111 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 Cu-Ka (1.541874 A) 2theta

Back to SLG: cold consolidation and new foams

While BSG is 'naturally' prone to zeolitization SLG can still be combined with Al_2O_3 rich waste...

Chemical Component	Rock Wool (RW)
CaO	17.4
SiO_2	40.4
Al_2O_3	15.8
Fe ₂ O ₃	9.2
Na ₂ O	1.4
K ₂ O	0.4
MgO	12.6
P_2O_5	0.1
TiO ₂	0.8
SO ₃	n.d
Cl	n.d

J. Yliniemi et al., Utilization of Mineral Wools as Alkali-Activated Material Precursor. *Materials* 9 (2016) 312.

After drying Sample surviving boiling test [geopolymer-like] Raw materials: 50 wt% SLG, 50 wt% RW (all amorphous) In solution 3M NaOH (30 min), 3d at 75 °C Liq/Sol=0.53 Activation: formation of zeolites Sodalite (Na-based) and Gismondine (Ca-based)

After firing at 800 °C: glass-ceramic foam

Discarded glasses expressing great potential for the obtainment of stable inorganic gels

Systems to be adjusted by:

- Activators: Aluminates significant in yielding AlO₄ units
- Selection of glasses: some glasses are inherently prone to the formation of zeolite-like gels
- Secondary waste: attention to Al₂O₃-rich waste

Other features:

- **Development of porous bodies**: exploration of pore generation at the early stage of gelation (by intensive **mechanical stirring**) or **decomposition of binding phase**
- Sorbents: simplified approach, focus on zeolite phases

Acknowledgements Funding and support

- European Community's Horizon 2020 Programme through a Marie Skłodowska-Curie Innovative Training Network ('CoACH", g.a. no. 642557) http://www.coach-etn.eu
- European Community's Horizon 2020 Programme through H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 project ('FunGLASS", g.a. no. 739566) http://www.funglass.eu/

MANY THANKS FOR YOUR ATTENTION! enrico.bernardo@unipd.it

http://www.dii.unipd.it/bernardo