

GDR-Verres / USTV GDR Verres Atelier « Altération des verres industriels : concepts, méthodologies et cas d'études » Marcoule, 31 mars-1^{er} avril

Altération des verres du patrimoine en conditions atmosphériques

Anne Chabas

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

Impact de la pollution sur le bâti

Comprendre les **processus d'altération atmosphérique** à court et à long terme des matériaux du patrimoine bâti

Facteurs intrinsèques

Propriétés (surface, subsurface)

Composition (formulation, milieu de sédimentation)

Equipe :

Anne Chabas (MCF-HDR), Tiziana Lombardo (MCF) Aurélie Verney-Carron (MCF), Mandana Saheb (CR), Aline Petit-Mangin (MCF)

Approche transversale :

Etudes in situ, simulations sur le terrain, simulations en laboratoire, modélisation

Prélèvements sur MH, chez fondeurs

Exposition de matériaux en site réel et suivi environnemental (PIC-Matériaux, Prog. Nations-Unies)

Chambre d'adsorption isotherme Cellule de dissolution CIME : chambre de dépôt sec CIME2 : chambre de dépôt humide

Fonction Dose-Réponse Modèle empirique et semiempirique (soiling)

Activités sur les verres

Questa finestra non è stata pulita da 6 mesi.

Neanche questa.

© SSV - ActivTM

Verres de vitraux : problématique

Verre silico-calco-potassique soumis aux agents atmosphériques

Simulation et modélisation de l'altération de verres de composition médiévale dans l'atmosphère urbaine - Thèse Lucile Gentaz (décembre 2011)

Influence des dépôts secs ?

Influence des dépôts humides ?

Contribution respective des facteurs extrinsèques (atmosphère) et intrinsèques (matériau) dans l'altération ?

Verres de vitraux & modèles : démarche

Approche analytique multi-technique et multi-échelle

Verres de vitraux & modèles : exposition in-situ

Exposition de verres (modèles et anciens) en site réel en condition abritée ou non des précipitations

Dépôt sec seul

Dépôt humide dominant

Norme : ISO 8565

Verres modèles : impact des dépôts secs (1)

Verres modèles : impact des dépôts secs (2)

Dépôts polluants gazeux (+particules) contribuent au gain de masse -> Néocristallisations

Verres modèles : impact des dépôts secs (3)

HR_d : 43%

Néocristallisations

Rôle dans l'altération ?

Verres modèles : impact des néocristallisations

Altération en laboratoire

- 8 mois
- $T: 20^{\circ}C$
- Cycles entre 33% et 97% HR (1 cycle =72h)

- Rinçage surface avant analyse par microscopie interférométrique

	K ₂ CO ₃	$CaSO_4 + K_2SO_4$	$CaSO_4 + K_2SO_4 + K_2CO_3$	Aucun sel
Mass loss (µg)	-2±0.2	0	0	0
Ra (nm)	29±3	17±1	35±2	7±2

→ Amplification de l'altération par les néocristallisations

Verres modèles : impact des dépôts humides (1)

Couche de verre altérée : hydratée, désalcalinisée

IRTF

Verres modèles : impact des dépôts humides (2)

Pourquoi l'altération semble-t-elle suivre une évolution linéaire alors qu'elle est caractérisée par la lixiviation (processus de diffusion, Vt)?

Verres modèles : impact des dépôts humides (3)

Verres modèles : impact des dépôts humides (4)

	-			
Temps	n° paliers	Profondeur		
6 mois	1	2 µm		
12 mois	1	4 µm		
24 mois	3	16 µm		
36 mois	5	20 µm		
48 mois	6	27 µm		

→ Augmentation du nombre de paliers consécutifs et de leur profondeur

Temps (mois)	<24	24	36	48
Epaisseur (µm)	< 8	18	30	42

→ Augmentation de la profondeur maximale de perte de matière (ponctuelle)

→ Maintien d'une cinétique d'altération linéaire

Verres modèles : contribution des facteurs environnementaux

Variation de la masse: indicateur de l'altération du verre

- Contribution particulaire (Si Na Ca)
 Contribution gazeuse (anions)
 - Contribution de l'eau adsorbée (cations) Contribution de l'eau de ruissellement

Contribution des dépôts sec et humide à l'altération du verre (% massique)

		Humide		
	particules	gaz	vapeur	eau
Si-K-Ca	6.8%	6.4%	3.4 %	83.4%
Si-Na-Ca	68%	0%	0%	32%

après 15 mois d'exposition

14 Verres de vitraux silico-calco-potassiques : 650-710 ans

Echantillon		Ou1a	Ou2a	Ou2b	Ou4b	Ou5a	Ou5b	Ev1a	Ev1b	Ev2a	Ev2b	Ev3a	Ev3b	SP1a	SP1b
Epaisseur de la	Moy	2	43	83	36	47	22	12	67	2	50	12	8	42	49
couche modifiée															
(en µm)	E-t.	2	37	51	10	23	29	11	15	3	10	20	10	15	14
Morphologie															

Discontinue - Concentrique Continue - Plane

arborescente intermédiaire compacte

hétérogène homogène

→ Couches d'altération d'épaisseurs et de morphologies très variées

Verres de vitraux

Verres de vitraux --> verres modèles (36 mois)

→ Structures et produits d'altération similaires

TEM images (bright field)and schematic pictures of alteration layers observed on samples OU2 (a), Ev1 (b)and MG36 (c).

- Verre modèle : Enrichissement en carbone, parfois calcium et potassium
- Vitraux: Enrichissement en phosphore et soufre, parfois calcium

			Vitraux	Si-K-Ca
		Gypse (CaSO ₄ • 2H ₂ O) et/ou Anhydrite (CaSO ₄)	CA et surface	CA et surface
		Syngénite (K ₂ Ca(SO ₄) ₂ .H ₂ O)	CA et surface	CA et surface
	Suitates	Arcanite (K_2SO_4) et/ou Mercallite (KHSO ₄)		
		Polyhalite (K2Ca ₂ Mg(SO ₄) ₄ • 2H ₂ O)		
		Calcite (CaCO ₃) et/ou Ikaite - CaCO ₃ •6H ₂ O	CA et surface	Couche altérée (CA)
		K ₂ CO ₃	Couche altérée	Surface
	Carbonates	Ankérite (Ca(Fe ²⁺ ,Mg)(CO ₃) ₂₎		
		Eitelite (Na ₂ Mg(CO ₃) ₂)		
		Cérussite PbCO ₃		
		K ₆ P ₆ O ₁₂ •3H ₂ O		
	Phosphates	K ₂ CaP ₆ O ₁₈ •6H ₂ O)		
		K ₃ P ₃ O ₉		
		(Fe,Mg,Mn) ₃ PO ₄ •8H ₂ O		
		Ca ₂ P ₂ O ₇ •2H ₂ O		
	Ciliantee	Silice (Quartz et Amorphe)		
	Silicates	Argile		
т)	Chlorure	Sylvite (KCI)		
et T.		Hématite, Fe ₂ 0 ₃		
	Oxydes et métaux	Mn ₂ O ₃		
[7]		Permanganate de plomb (PbMnO ₄₎		
		Plomb métallique (Pb)		

Caractérisation des phases cristallisées présentes 5

Mécanismes de mise en place de la couche altérée: modèle conceptuel

Succession de 3 processus :

- interdiffusion
- réorganisation par cristallisation
- fracturation et précipitation de phases secondaires

Verres autonettoyants : problématique

Evaluation de l'efficacité autonettoyante des verres à couche (TiO₂) en site urbain

Evolution temporelle du flou à Paris – à la pluie

- Reference:Haze (t) = $0.18 + 1.31 / (1 + (0.7 / t)^{1.82})$ $r^2 = 0.94$ - Self-cleaning:Haze (t) = $0.27 + 1.07 / (1 + (1.66 / t)^{1.60})$ $r^2 = 0.94$

Evolution temporelle du flou à Paris – sous abri

- Reference:Haze (t) = $0.20 + 5.76 / (1 + (3.88 / t)^{1.41})$ $r^2 = 0.96$ - Self-cleaning:Haze (t) = $0.29 + 10.06 / (1 + (30.4 / t)^{1.43})$ $r^2 = 0.92$

Comparaison air/référence/autonettoyant – sous abri

1) Propriétés photocatalytiques du verre autonettoyant

Comparaison air/référence/autonettoyant – à la pluie

Comparaison air/référence/autonettoyant – sous abri

2) Propriétés superhydrophiles du verre autonettoyant

$$e^{-}$$
 + Ti⁴⁺ \rightarrow Ti³⁺
4 h⁺ + 2 O_2^{-} \rightarrow $O_2^{<7}$

→Création de lacunes (oxygènes vacants)

2) Propriétés superhydrophiles du verre autonettoyant

$$e^{-}$$
 + Ti⁴⁺ \rightarrow Ti³⁺
4 h⁺ + 2 O_2^{-} \rightarrow $O_2^{<7}$

→Création de lacunes (oxygènes vacants)

2) Propriétés superhydrophiles du verre autonettoyant

$$e^{-}$$
 + Ti⁴⁺ \rightarrow Ti³⁺
4 h⁺ + 2 O_2^{-} \rightarrow $O_2^{<}$

→Création de lacunes (oxygènes vacants)

→ Remplacement des oxygènes vacants par des molécules d'eau dissociées.

Pour en savoir plus...

- Chabas A., Alfaro S., Lombardo T., Verney-Carron A., Da Silva E., Triquet S, Cachier H., Leroy E. (2014): Discussing the long-term efficiency of self-cleaning glass in an urban environment. Building and environment, under review.
- Lombardo T., Chabas A., Verney-Carron A., Cachier H., Triquet S., Darchy S. (2014) : Glass soiling in rural, urban and industrial environments: quantification and evolution. Environmental Science and Pollution Research, accepté.
- Lombardo T., Gentaz L., Verney-Carron A., Chabas A., Loisel C., Neff D., Leroy E. (2013) : Characterisation of complex alteration layers in medieval glasses. Corrosion Science, 72, 10–19.
- Alfaro S., Chabas A., Lombardo T., Verney-Carron A., Ausset P. (2012): Predicting the soiling of modern glass in urban environments: a new physically-based model. Atmospheric Environment, 60, 348-357.
- Gentaz L., Lombardo T., Chabas A., Loisel C., Verney-Carron A. (2012): Impact of neocrystallisations on the SiO₂-K₂O-CaO glass degradation due to atmospheric dry depositions. Atmospheric Environment, 55, 459-466.
- Gentaz L., Lombardo T., Loisel C., Chabas A., Verità M., Valloto M. (2011): Early stage of weathering of medieval-like potash-lime model-glass: evaluation of key factors. Environmental Science and Pollution Research, 18, 291-300.
- Chabas A., Gentaz L., Lombardo T., Sinegre R., Falcone R., Verità M., Cachier H. (2010): Wet and dry atmospheric deposition on TiO₂ coated glasses. Environmental Pollution, 158, 3507-3512.
- Lombardo T., Loisel C., Gentaz L., Chabas A., Verità M., Pallot-Frossard I. (2010): Long term assessment atmospheric decay of stained glass Windows. Corrosion Engineering Sciences and Technology, 45, 5, 420-424.
- Chabas A. Lombardo T., Cachier H., Pertuisot M. H., Oikonomou K., Falcone R., Verità M., Geotti-Bianchini F. (2008): Behaviour of self-cleaning glass in urban atmosphere. Building and Environment, 43, 2124-2131.