



## Altération et durabilité des verres

Ecole Surface et interface du verre

**Session Applications** 

CNRS Oléron, 15-20 octobre 2023

**Odile Majérus**, Daniel Caurant, équipe PCMTH, IRCP, Chimie Paristech-PSL Travaux d'équipe présentés (altération atmosphérique) :

F. Alloteau, I. Biron, P. Lehuédé, T. Charpentier, A. Seyeux (thèse F. Alloteau, PCMTH, 2014-2017)
A. Serve, S. Papin, H. Montigaud, T. Cretin (thèse A. Serve, SGR, 2020-2023)
T. Law, M. Godet (thèse T. Law, PCMTH, 2022-2025)

## Plan

#### • Les applications de la durabilité chimique des verres

- ✓ Où la durabilité chimique est recherchée
- ✓ Où la dissolution est recherchée
- L'interaction eau-verre : les mécanismes, les produits de réaction et la modélisation cinétique

#### L'altération en milieu immergé

- ✓ Effet de la composition du verre
- ✓ Effet des paramètres structuraux
- ✓ Effet des espèces en solution
- L'altération en milieu atmosphérique
  - ✓ Les spécificités
  - ✓ Quelques observations sur les verres silicatés alcalins alcalino-terreux
  - ✓ Effet des ions Zn<sup>2+</sup> déposés en surface

#### Où la durabilité est recherchée

#### Maintien de la qualité de la surface du verre lors du stockage et transport



#### **Contact alimentaire**





#### Verres pharmaceutiques



**Temps court** : quelques heures à quelques semaines

Où la durabilité est recherchée

Verres commerciaux en conditions d'usage sévères

#### Verres du patrimoine

Verre nucléaire



**Temps long** : quelques décennies au million d'années

#### Où la dissolution est recherchée

#### **Bioverres**





# \*1500 2/m 2/m \*1500 2/m 3/m \*1500 2/m 3/m \*1500 2/m 3/m

#### **Fibres d'isolation**

#### Glass wool (< 40 j) P. Lehuédé

(Saint-Gobain Recherche)

macrophage



fibre intra-alvéoles: pH 7

intra-macrophage: 4.5

L'altération des silicates : un paramètre géologique de contrôle du CO<sub>2</sub>

Minéralisation du CO<sub>2</sub> atmosphérique par altération des silicates sur des temps géologiques : (en parallèle de la bio-minéralisation) Ex : CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> + 2 CO<sub>2</sub> + 3 H<sub>2</sub>O  $\longrightarrow$  Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> + Ca<sup>2+</sup> + 2 HCO<sub>3</sub><sup>-</sup>

Falaise basaltique à Mayotte



Stockage du CO<sub>2</sub>? Minéralisation du CO<sub>2</sub> injecté en couche géologique : - Dissolution du CO<sub>2</sub> dans les eaux souterraines sous forme  $H_2CO_3$ - Dissolution acide des silicates de la roche - Précipitation des carbonates



Daval, D., npj-Mat. Deg. 2018

L'interaction eau - verre

## L'interaction eau-verre : Les réactions chimiques élémentaires

#### **Hydratation**

Avec les ONP Réaction acido-basique

pH acide : échange ionique Na<sup>+</sup>/H<sup>+</sup> ≡ Si-O<sup>-</sup>-Na<sup>+</sup> + H<sub>3</sub>O<sup>+</sup>  $\leftrightarrow$  ≡ Si-OH + Na<sup>+</sup><sub>aq</sub> + H<sub>2</sub>O

pH neutre : dissociation de l'eau sur les ONP  $\equiv$  Si-O<sup>-</sup>-Na<sup>+</sup> + H<sub>2</sub>O  $\leftrightarrow \equiv$  Si-OH + Na<sup>+</sup><sub>aq</sub> + OH<sup>-</sup><sub>aq</sub> Avec les OP Hydrolyse-recondensation du reseau silicaté  $\equiv Si - O - Si \equiv + H_2O \leftrightarrow 2 \equiv Si - OH$ 

Hydrolyse catalysée en milieu basique  $\equiv Si - O - Si \equiv + OH^- \leftrightarrow \equiv Si - O^- + \equiv Si - OH$  $\equiv Si - O^- + H_2O \leftrightarrow \equiv Si - OH + OH^-$ 



## L'interaction eau-verre : Les réactions chimiques élémentaires

#### **Hydratation**

Avec les ONP Réaction acido-basique

pH acide : échange ionique Na<sup>+</sup>/H<sup>+</sup> ≡ Si-O<sup>-</sup>-Na<sup>+</sup> +  $H_3O^+ \leftrightarrow \equiv$  Si-OH + Na<sup>+</sup><sub>aq</sub> +  $H_2O$ 

pH neutre : dissociation de l'eau sur les ONP  $\equiv$  Si-O<sup>-</sup>-Na<sup>+</sup> + H<sub>2</sub>O  $\leftrightarrow \equiv$  Si-OH + Na<sup>+</sup><sub>aq</sub> + OH<sup>-</sup><sub>aq</sub> Avec les OP Hydrolyse-recondensation du reseau silicaté  $\equiv$  Si - O - Si  $\equiv$  + H<sub>2</sub>O  $\leftrightarrow$  2  $\equiv$  Si - OH

Hydrolyse catalysée en milieu basique  $\equiv Si - O - Si \equiv + OH^- \leftrightarrow \equiv Si - O^- + \equiv Si - OH$  $\equiv Si - O^- + H_2O \leftrightarrow \equiv Si - OH + OH^-$ 

> Si(OH)<sub>4 aq</sub> Dissolution du verre Formation d'un gel poreux

Na<sup>+</sup><sub>aq</sub>, OH<sup>-</sup><sub>aq</sub> Lessivage des alcalins (leaching) Verre hydraté



## Cinétique (incongruente) de la dissolution du verre





 $NL_i = \frac{C_i \times V}{x_i \times m \times \Sigma}$ Perte de masse normalisée de l'élément i, NL<sub>i</sub> (t) Cas d'un verre silicaté alcalin mixte, T = 80°C, pH libre, S/V = 1 cm<sup>-1</sup> (conditions diluées) Na K • • N (g.m-3) 8 <u>E</u> • • Si Ca 3

Time (d)

4 jours

## Cinétique (incongruente) de la dissolution du verre

Profil TOF-SIMS



Perte de masse normalisée de l'élément i, NL<sub>i</sub> (t)  $NL_i = \frac{C_i \times V}{x_i \times m \times \Sigma}$ 

Cas d'un verre silicaté alcalin mixte, T = 80°C, pH libre, S/V = 1 cm<sup>-1</sup> (conditions diluées)



## Thermo et cinétique de la dissolution du réseau silicaté



$$\frac{d[Si_{aq}]}{dt} = k_{+}[Precursor] \propto k_{+} \times Surface$$

avec 
$$k_{+} = k_{0} \exp\left(\frac{-\Delta G^{*}}{RT}\right)$$

Théorie de Aagard et Hegelson (1982) de la cinétique de dissolution :

rate =  $k_+ S \prod a_i \left(1 - \frac{Q}{K_s}\right)$  donne ici rate =  $k_+ S \left(1 - \frac{[Si(OH)_4]}{K_s}\right)$ 

## Thermo et cinétique de la dissolution du réseau silicaté



## Thermo et cinétique de la dissolution du réseau silicaté

 $SiO_2 + 2 H_2O$ 

 $\xrightarrow{} Si(OH)_{4 aq}$  *Precipitation* 

Dissolution

S. Gin et al., Nat. Comm. 2015

Attention : il ne s'agit pas d'un équilibre avec le verre mais avec le gel !

- Si le *Si* dans le verre et le *Si* dans le gel ont des potentiels chimiques différents, **le réseau du verre continuera à se « dissoudre »** et à se transformer **même à saturation**. Si elle peut, l'eau continuera de rentrer dans la verre sain.
- Les espèces solubles du verre continueront à passer à travers le gel, car elles répondent à d'autres équilibres.
- De plus, le gel silicaté se forme par précipitation depuis la solution **et par mûrissement au sein du verre hydraté -> phénomène de passivation avant saturation**, qui rend difficile l'isolement d'un équilibre dominant









## Effet de l'ordre à grande distance : Comparaison verre et cristal de labradorite (~ NaAlSi<sub>3</sub>O<sub>8</sub>)

Cagnon et al., npj Mat. Deg. 2023 Perez et al., GCA 2019

Altération à pH = 1,5 ou pH = 3, T = 90°C, eau saturée en Si (~140 ppm), 12 jours ou 33 jours

#### Cristal :

- Patterning dû à l'ordre cationique Ca/Na et la dissolution plus rapide des régions plus riches en Ca
- Variation abrupte du rapport Al/Si entre cristal et gel (ASSL) •
- Epaisseur faible du gel : ~20-30 nm ٠

#### Mécanisme dissolution congruente



## Effet de l'ordre à grande distance : Comparaison verre et cristal de labradorite (~ NaAlSi<sub>3</sub>O<sub>8</sub>)

Cagnon et al., npj Mat. Deg. 2023 Perez et al., GCA 2019

Altération à pH = 1,5 ou pH = 3, T = 90°C, eau saturée en Si (~140 ppm), 12 jours ou 33 jours

#### Cristal :

- Patterning dû à l'ordre cationique Ca/Na et la dissolution plus rapide des régions plus riches en Ca
- Variation abrupte du rapport Al/Si entre cristal et gel (ASSL)
- Epaisseur faible du gel : ~20-30 nm

#### Mécanisme dissolution congruente



#### erre

- Variation continue du rapport Al/Si entre verre et gel
- Plusieurs épaisseurs selon l'élément : Na ~500 nm, Al ~300 nm
- Epaisseur plus grande du gel Mécanisme dissolution incongruente





Vienna et al., IJAGS 4, 283-294, 2013



$$D_{Na,HG} = 0,678 \times [H^+]^{0,37} \times \exp\left(\frac{-93600}{RT}\right)$$





Verney-Carron et al., GCA 2010; JNM 2010 + Verres naturels basaltiques : thèse B. Parruzot, Univ. Montpellier, 2015

## Altération en milieu immergé

## L'altération en milieu immergé : effet de la composition

Premier ordre, temps longs : approche thermodynamique par les enthalpies de dissolution (hydration enthalpy)

Jantzen and Plodinec, JNCS 67 (1984) 207-223 Paul, Chemistry of Glasses, Chapman and Hall, NY, 1982



Enthalpie libre de dissolution :

 $M_2SiO_3 + H_2O \leftrightarrow 2 M^+ + H_2SiO_4^{2-} \qquad \Delta G = -RT \ln K$ 



- La dissolution augmente avec NBO/Si (M<sub>2</sub>O + MO/SiO<sub>2</sub>)
- Pour un NBO/Si fixé, la dissolution devrait varier inversement avec la force de champ de l'ion modificateur  $(\frac{Z}{R^2})$
- Ce modèle ne prend pas en compte l'enthalpie de mélange et l'entropie du verre....

## L'altération en milieu immergé : effet de la composition

**Premier ordre, temps longs** : les 5 types de verres de Hench Hench and Clark, Physical Chemistry of glass surfaces, JNCS 1978

- Ces types se focalisent sur les propriétés de la couche d'altération (stabilité, passivation)
- Ils dépendent de la composition du verre et de la chimie de la solution, **notamment le pH !**



## L'altération en milieu immergé : effet de la composition

**Premier ordre, temps longs** : les 5 types de verres de Hench Hench and Clark, Physical Chemistry of glass surfaces, JNCS 1978

Exemple : effet d'Al<sub>2</sub>O<sub>3</sub> dans les aluminosilicates Hamilton and Pantano, JNCS 1997

> **I. Verre inerte** Verre aluminosilicate à pH 9 Na<sub>2</sub>O – **0.8 Al<sub>2</sub>O<sub>3</sub>** – 2.2 SiO<sub>2</sub>

V. Verre congruent soluble Le même verre à pH 2 !

II. Verre incongruent avec couche protectrice Verre aluminosilicate à pH 2 (Si layer) et pH 9 (Si and Al layer)  $Na_2O - 0.2 Al_2O_3 - 2.8 SiO_2$ 



## L'altération en milieu immergé : effet de la composition

**Un oxyde insoluble :**  $ZrO_2$  (liaisons Zr - O - Si très peu hydrolysables)

C. Cailleteau et al., Nat. Mat. 2008



- ZrO<sub>2</sub> ralentit l'hydrolyse du réseau et la diffusion de l'eau dans le verre
- ZrO<sub>2</sub> empêche le mûrissement et la fermeture de porosité
- SAXS et diffusion des neutrons aux petits angles + simulations Monte Carlo empiriques

## Modèles prédictifs aux temps courts ?

#### La théorie des contraintes topologiques (TCT)

Elle relie les paramètres structuraux à l'énergie d'activation de la dissolution (diffusion de l'eau, hydrolyse Si - O - Si)



Pignatelli, Bauchy et al., 2016, Langmuir 32(18) 4434

Nombre de contraintes mécaniques par atome = n<sub>c</sub>

Vitesse de dissolution k :  $k = k_0 exp\left(\frac{-n_c E_0}{RT}\right)$ 

On trouve une tendance commune pour :

- Verres aluminosilicates (noir)
- Verres borosilicates (blancs)
- Tendance déterminée sur un set de 7 verres en orange

S. Gin et al., npj-Mat. Deg 2020





#### Effet des espèces anioniques

Dissolution du verre 64 SiO<sub>2</sub> – 18 B<sub>2</sub>O<sub>3</sub> – 18 Na<sub>2</sub>O en présence du tampon Tris/HCl (5.10<sup>-2</sup> M/4.10<sup>-2</sup> M) à 80°C





Tournié, A. et al., J. Colloid Int. Sci. 2013

#### Effet des espèces anioniques

Dissolution du verre 64 SiO<sub>2</sub> – 18  $B_2O_3$  – 18 Na<sub>2</sub>O en présence du tampon Tris/HCl (5.10<sup>-2</sup> M/4.10<sup>-2</sup> M) à 80°C



#### Effet des espèces anioniques

→ Même effet d'extraction sélective du bore par l'acide oxalique, accélérant la corrosion des fibres de verre E : R.L. Jones, Glass Tech. – Eur. J. Glass Sci. Tech. A. 47 (2006) 167–171

→ Les citrates accélèrent la dissolution des verres silica Appl. Geochem. 9 (1994) 255–269

Les sidérophores, molécules organiques complexantes produites par certaines bactéries pourraient contribuer à accélérer l'altération et la formation de phases brunes sur les vitraux

Valbi, V. et al., npj-Mat. Deg. 2023



#### Effet des ions divalents, comme Ca<sup>2+</sup>

- Verre SON68 : quelle que soit la température r<sub>0</sub> (eau COX) > r<sub>0</sub> (eau pure) + Délai sur le régime de chute de vitesse (effet Mg<sup>2+</sup>) – Jollivet P. et al., JNM 2012
- Augmentation de  $r_0$  attribuée à la complexation de surface par les ions divalents *Jollivet P. et al., Chem. Geol. 2012*



ionique fixée

#### Effet des ions divalents, comme Ca<sup>2+</sup>

- Verre SON68 : quelle que soit la température r<sub>0</sub> (eau COX) > r<sub>0</sub> (eau pure) + Délai sur le régime de chute de vitesse (effet Mg<sup>2+</sup>) – Jollivet P. et al., JNM 2012
- Augmentation de  $r_0$  attribuée à la complexation de surface par les ions divalents *Jollivet P. et al., Chem. Geol. 2012*
- L'effet de Ca<sup>2+</sup> sur la vitesse initiale et la chute de vitesse dépend du pH et de la concentration initiale en Ca<sup>2+</sup>
  - Implications sur la réactivité verre milieu cimentaire Mercado-Depierre S. et al., JNM 2013



## L'altération en milieu atmosphérique

HR < 100 %

Verres du patrimoine

Verres commerciaux en conditions de stockage ou d'usage sévères









Verre nucléaire



## Cas des verres du patrimoine

1. Apparition de sels en surface (carbonates, sulfates,

formates...)

2. Fracturation de la surface hydratée (crizzling) « Incipient » ou « excipient »



"Verres qui pleurent", Koob, 2006 Carbonates de potassium déliquescents









## Cas des verres du patrimoine



D'après Melcher, M. and Schreiner, M., in Modern Methods for Analysing Archaeological and Historical Glass, K. Janssens Ed., 2013



## Etude de l'altération atmosphérique des verres « instables » Thèse F. Alloteau, C2RMF, IRCP, 2014-2017





1\*1\*0.3 cm<sup>3</sup>



10-20 μm, 3900 +/-300 cm<sup>2</sup>/g (BET-Kr)

T, HR, t



## Etude de l'altération atmosphérique des verres « instables » Thèse F. Alloteau, C2RMF, IRCP, 2014-2017 Alloteau F. et al., All

#### Ageing of 6 months at 40 °C, 85 %RH

Optical microscopy





- Unstable glasses :
- Salts
- Crizzling
- Alteration layer **2 to 2.5 μm**

Alloteau F. et al., Corr. Sci. 2017, 2019 Alloteau F. et al., npj Mat. Deg. 2020



#### Stable glass :

- Many salts
- No crizzling
- Alteration layer **350 nm**

#### SL-R - stable



#### Etude de l'altération atmosphérique des verres « instables » Thèse F. Alloteau, C2RMF, IRCP, 2014-2017 Alloteau F. et al., C Alloteau F. et al., C

Alloteau F. et al., Corr. Sci. 2017, 2019 Alloteau F. et al., npj Mat. Deg. 2020

« O measured » - « O calc by stoechiometry » = %  $H_2O$ 

EDX 10 kV (1  $\mu$ m) of the flakes of glass A (6 months at 40°C / 85 RH%)

|          | O<br>meas | Na   | Mg   | Al   | Si    | К    | Са   | O<br>calc | Na/Si | K/Si | Ca/Si | H <sub>2</sub> O<br>wt% |
|----------|-----------|------|------|------|-------|------|------|-----------|-------|------|-------|-------------------------|
| Pristine | 59.55     | 7.58 | 0.42 | 0.33 | 25.22 | 4.98 | 1.90 | 59.55     | 0.30  | 0.20 | 0.075 | -                       |
| 80°C 72h | 64.09     | 6.67 | 0.34 | 0.28 | 22.07 | 4.49 | 2.06 | 52.54     | 0.30  | 0.20 | 0.093 | 7                       |
| 40°C 6m  | 64.44     | 5.87 | 0.63 | 0.29 | 23.61 | 5.06 | 0.11 | 58.29     | 0.25  | 0.21 | 0.004 | 9                       |
|          |           |      |      |      |       |      |      |           |       |      |       |                         |

#### + TGA of bulk altered powders



- EDX
- ATG
- Tof-SIMS

#### In the **unstable glasses :**

- Water content is the same at 40°C and at 80°C : about 10 wt% (almost 30 mol% !)
- Alkalis are mostly retained in the hydrated layer. Alkaline-earths are mostly driven to the surface (except for P glass)

#### Etude de l'altération atmosphérique des verres « instables » Thèse F. Alloteau, C2RMF, IRCP, 2014-2017 20

#### Powders aged 6 months at 40 °C, 85 %HR

RMN MAS<sup>1</sup>H



SIOH POH

SOH COH

BOH

AIOH/GaOH/InO

MgOH/CaOH

nonetite, H(3

phase D

15

## Bilan : des conditions bien spécifiques d'altération



#### En phase liquide :

- « Elimination » par dilution des espèces solubles (alcalins, OH<sup>-</sup>, B(OH)<sub>3</sub>, ...)
- Formation d'un gel dans un milieu d'eau liquide : activité de l'eau = 1 et propriétés de solvatation « normales »



Si

#### En phase atmosphérique :

- Les espèces mobiles sont déplacées mais pas éliminées : elles restent en surface et dans la pellicule hydratée
- Film d'eau saturé par les espèces issues des gaz atmosphériques et issues du verre, phases secondaires différentes (carbonates)
- Eau liée, réseau de liaisons H -> activité 1 ? Solvatation ? Nouvelles espèces ?

# Altération atmosphérique de verres du domaine float : temps courts (thèse A. Serve, SGR, SVI, IRCP, 2020-2023)



# Altération atmosphérique de verres du domaine float : temps longs (thèse A. Serve, SGR, SVI, IRCP, 2020-2023)

Altération atmosphérique à 35°C et 85 % HR de verres modèles pendant 6 mois

Cartographie élémentaire 3D obtenue par ToF-SIMS

Echantillon non lavé !







- Sels de Na<sup>+</sup> en surface. Na<sup>+</sup> partout dans la couche altérée
- Déplacement des ions Ca<sup>2+</sup> et formation de carbonates de Ca localisés
- Déplacement des ions Mg<sup>2+</sup> et formation d'une couche enrichie en Si et Mg sous les carbonates de Ca

# Altération atmosphérique de verres du domaine float : temps longs (thèse A. Serve, SGR, SVI, IRCP, 2020-2023)

Reconstruction de la surface avec stratification chimique :



#### Attention ! Le lavage n'est pas neutre !

- Les sels carbonates de Na et carbonates de Ca sont solubles ou partiellement solubles
- La couche riche en Si-Mg est insoluble
- Cette stratification apparait entre 1 et 3 mois et n'est pas responsable des différences de cinétiques d'hydratation entre les compositions



## Effet du rapport alcalino-terreux / alcalins (thèse A. Serve)



# Effet de la composition en ions modificateurs (thèse A. Serve, SGR, SVI, IRCP, 2020-2023)

#### Hypothèse d'explication :

- Les verres instables forment des silicates alcalins hydrates riches en ONP/OH<sup>-</sup> ce qui accélère l'hydrolyse du réseau
- Les verres stables forment des carbonates en surface, les OH<sup>-</sup> sont éliminés et le réseau est repolymérisé



## Effet d'espèces déposées en surface ? Cas des sels de zinc

Alloteau F. et al., J. of the Am. Ceram. Soc. 2021 : Part a and Part b

Dépôt par spray d'une solution de Zn(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O / Ethanol sur la surface du verre (c = 0,6 à 9 mmol.L<sup>-1</sup>)



## Effet d'espèces déposées en surface ? Cas des sels de zinc

Alloteau F. et al., J. of the Am. Ceram. Soc. 2021 : Part a and Part b

Dépôt par spray d'une solution de Zn(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O / Ethanol sur la surface du verre (c = 0,6 à 9 mmol.L<sup>-1</sup>)

 $Zn^{2+} + 2 NO_3^{-} + 2 \equiv Si - O^{-}Na^{+} + 2 H_2O \rightarrow (\equiv Si - O)_2Zn(H_2O)_2 + 2 NaNO_3$ 

#### Potentiel zeta

Mesure électro-acoustique sur poudre traitée

| рН   | Non traité | Traité 0.1<br>μg/cm <sup>2</sup> |
|------|------------|----------------------------------|
| 10,3 | -23,8 mV   | -3,9 mV                          |
| 7,9  | -9,9 mV    | -1,3 mV                          |
| 7    | -8,2 mV    | -2,3 mV                          |
| 5    | -6,8 mV    | -4,8 mV                          |

EXAFS Zn K-edge rasant + TOF-SIMS



Insertion et diffusion des ions Zn<sup>2+</sup> en sub-surface du verre pendant le vieillissement (40°C ou 80°C) Hypothèses pour le ralentissement de l'hydratation...

✓ Surface moins chargée= moins hydrophile ?



- Si OH Si O Zn Si Si
- Insolubilisation de la surface ?
   (hydroxysilicates de zinc très insolubles)
- ✓ Passivation de la surface ?
- ✓ Neutralisation du pH dans le film d'eau ?

## Merci pour votre attention !

### Bilan : des conditions bien spécifiques d'altération



# Effet de la composition en ions modificateurs (thèse A. Serve, SGR, SVI, IRCP, 2020-2023)

Altération atmosphérique à **35°C et 85 % HR** de 6 verres modèles

| Verre | SiO <sub>2</sub> | $Al_2O_3$ | Na <sub>2</sub> O | CaO  | MgO | $R_1$ | $R_2$ |
|-------|------------------|-----------|-------------------|------|-----|-------|-------|
| AS1   | 72,5             | 0,5       | 11,0              | 12,7 | 3,2 | 1,5   | 0,2   |
| AS2   | 71,5             | 0,5       | 13,8              | 11,2 | 2,8 | 1,0   | 0,2   |
| AS3   | 71,3             | 0,5       | 18,5              | 7,6  | 1,9 | 0,5   | 0,2   |
| AS0   | 71,4             | 0,5       | 13,7              | 14,0 | 0,0 | 1,0   | 0,0   |
| AS4   | 71,6             | 0,5       | 13,9              | 8,3  | 5,5 | 1,0   | 0,4   |
| AS6   | 72,0             | 0,5       | 13,7              | 5,4  | 8,1 | 1,0   | 0,6   |

Formateurs

Modificateurs

$$R_1 = \frac{\text{CaO} + \text{MgO}}{\text{Na}_2\text{O}} \qquad \qquad R_2 = \frac{\text{MgO}}{\text{CaO} + \text{MgO}}$$