
An introduction to classical molecular dynamics

Simona ISPAS

simona.ispas@univ-montp2.fr

Laboratoire Charles Coulomb,

Dépt. Colloı̈des, Verres et Nanomatériaux, UMR 5221
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Introduction : Computer simulations

� An established tool to study complex systems and gain insight into
their behaviour
� Simulations fill the gaps between real experiments and theories, and
microscopic and macroscopic

from M. P. Allen, NIC Series, Vol. 23, 1 (2004)

Classical MD GDR-VERRES, May 2011 – p.3/62



Computer simulations - in silico experiments

Simulations are relatively simple, inexpensive, and everything can be
measured (in principle)

Help to understand the experimental results and/or to propose new
experiments

Test of theoretical predictions

Investigate systems on a level of detail which is not possible in real
experiments or analytical theories (local structure, mechanism of transport,
surfaces, ...)

Creating new materials (not yet in glassy science)
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Computer simulation techniques

Given : an interesting phenomenon or a theoretical prediction
→ choose Hamiltonian, i.e. the model of atomic interactions
→ choose size of the simulation box and boundary conditions
→ choose length of the run (=time window investigated)

⇒ Two main families of simulation techniques

1. Molecular Dynamics (MD) : solve Newton’s equations of motion
• realistic trajectories of the particles, in principle
• propagation in phase space is relatively slow

2. Monte Carlo : pick a random configuration and apply the
Boltzmann criterion
• trajectory is not realistic
• unphysical moves can be used to accelerate
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1st Part : Basic Molecular dynamics
MD principle and flowchart

Periodic boundary conditions

Interaction potential : short- and long-range interactions,
truncation, smoothening, neighbor list, very short range interaction

Integrator

Measurements : T and P
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MD principle

→ For a set of N interacting particles, one generates their trajectory
by numerical integration of Newton’s equation of motion, for a
specific interatomic potential U(rN)

mir̈i = fi; fi = −∇iU(rN)(1)

rN = (r1, r2, . . . , rN) is the complete set of 3N particle
coordinates.

→ Given initial condition {ri(0), ṙi(0)}i=1,2,...,N and boundary
condition, one solves the set (1) of coupled 2nd order differential
equations to yield positions and velocities at later times t = lδt :
{ri(lδt), ṙi(lδt)}, l = 1, 2, . . . , L.

→ In principle, all physical properties of the numerical sample (i.e.
collection of N particles) can be computed from the knowledge of
its phase space trajectory {ri(t), pi(t) = miṙi(t), fi(t)}i=1,2,...,N .
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Integrator

Integration of the coupled set (1) of Newton equations :
(1) discretization of the time in interval δt, and
(2) a suitable algorithm, called integrator, to propagate step-by-step

{ri(t), pi(t)} → {ri(t + δt), pi(t + δt)}

Requirements for a good, well-behaved integrator :

1. be simple and fast enough

2. stable trajectories with enough long timestep

3. the temporal evolution must be reversible

4. conserving energy and preserve phase space volume according
to Liouville theorem
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Integrator (2)

• Well-behaved and widely used integrators : the Verlet class
• Velocity Verlet integrator

ri(t + δt) = ri(t) + vi(t)δt +
fi(t)

2mi
δt2

fi(t + δt) = fi(ri(t + δt))

vi(t + δt) = vi(t) +
fi(t + δt) + fi(t)

2mi
δt
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Integrators : careful choice of δt

Velocity-Verlet integrator : compromise between energy conservation
and any waste of CPU time

σ2
Etot.

= 〈E2
tot.〉 − 〈Etot.〉2 ∝ δt2
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Example : SiO2 liquid, 1152 atoms sample, 6100K, BKS potential

⇒ δt = 2 fs inadequate choice!
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Flowchart for a typical run of an MD program

step 1 initialization : reading state parameters

(e.g. density, temperature)

set initial ri(0) and assign ṙi(0)

start MD-loop , do n=1, Nb of time-steps

step 2 calculate force on each particle

step 3 move particles by one time-step δt

step 4 collect data, i.e. save current positions and velocities

go back to step 2 if the preset Nb. of timesteps not reached

end MD-loop , enddo

step 5 analyse results
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A MD simulation study for network glasses

Melt-and-quench typical flowchart
1. System setup : potential, nb of atoms, time step δt and initial

configuration {ri(0), ṙi(0)}, i = 1, 2, . . . , N

e.g. positions on a lattice and velocities drawn from a Boltzmann distri-
bution - the precise choice is irrelevant as the system will ultimately lose
all memory of the initial state

2. Equilibration(s) run(s) at high temperature(s): achieve definite
mean values of T , P (fixed nb of atoms)

3. Production run (M steps) : computation of quantities of in-
terest along the trajectory {ri(jδt), ṙi(jδt), fi(jδt)}, j =

1, 2, . . . ,M

4. Cooling run

5. Propagation run for a waiting time at room temperature and
collecting data run in order to compute average properties
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Choice of the interatomic potential U(rN)

⇒ Main alternatives : classical and ab initio approaches
Ab initio approach (see M. Salanne’s lecture) :

interactions are calculated numerically from the instantaneous
positions of the ions, and taking into account the electronic
structure of the system, obtained using the density functional
theory (Kohn-Sham, DFT)

universality

it can handle relatively complex systems

computationally very expensive

typical system sizes : 100 - 1000 atoms

short trajectories
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Interatomic potential U(rN) : Classical approach
atoms are considered as interacting point particles, and electrons not
explicitely taken into account

an effective picture is adopted, i.e. introduction of a force field , defined by a
set of parameters and (most often) analytical functions, depending on the
mutual position of particles :

a force field generally fitted to experimental data or to results from quantum
mechanics calculations, corresponding to specific conditions of temperature
and pressure, and often based on a formal decomposition :

U(rN) =
∑

i

∑

j>i

u(2)(ri, rj) + 3-body terms + . . . (isolated system)

an effective potential is rather specific to a material, i.e. not transferable
when composition changes and/or physical conditions ;

simulations relatively cheap
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MD simulations of network glasses

Typical time and length scales, and
quench rates

Classical MD Ab Initio MD

Size 1 000 - 500 000 atoms 100 - 1000 atoms

∼ 100Å ∼ 15Å

Trajectory length ∼ 1 ns ∼ 20 - 30 ps

Quench rate 1010 to 1014 K/s 1014 to 1015 K/s

Other approaches : − combined classical and ab initio simulations

− hybrid or QM/MM simulations [e.g. like fracture in Si,
see Csanyi, Albaret, et al. PRL 93 (2004)]
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Classical approach : an example

The so-called BKS (van Beest, Kramer and van Santen) potential for SiO2

u(2)(ri, rj) = Vij(r = |ri − rj|) =
qiqje

2

r
+ Aij exp(−Bijr)−

cij

r6

for i, j = Si, O .
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Periodic Boundary Conditions (PBC)

- Given a system having a limited number of particles N , confined in a finite box
with specific geometry (called MD cell ), important contributions on the
measured properties would come from the surfaces.

e.g
Esurface

Ebulk

≈ 6N−1/3 for a cubic box (i.e. 6% for N = 106)

-Solution : impose PBC, i.e. the basic cell is surrounded by infinitely replicated
periodic images of itself

Consequences :
- The imposed artificial periodicity should be
bear in mind when considering properties in-
fluenced by long-range correlations.
- PBC inhibits the occurrence of long-
wavelength fluctuations.
- Normal modes of wavelength > L are mean-
ingless
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PBC (2)

• When using PBC , if a particle crosses a surface of the basic cell, it re-enters
through the opposite wall with unchanged velocity, and, for any observable, we
have : A(r) = A(r + nL), n = (n1, n2, n3), ni integers
• The potential energy is affected, e.g. for a 2-body potential :

U(rN) =
∑

i<j

u(2)(rij) +
∑

n

∑

i<j

u(|ri − rj + nL|) ⇒ infinite summation!!

Minimum image convention (MIC) :
distance rij = min|ri − rj + nL| over all n.
A particle interacts only with each of the (N−
1) other particules in the basic MD cell or
their nearest images.
⇒ cut off of the potential by the condition
rcut ≤ L/2

⇒ The use of PBC+MIC affects the computed properties.
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Interaction potential : spatial extent

Short vs long range : case of the BKS potential

Vij(r) =
qiqje

2

r
+ Aij exp(−Bijr) −

cij

r6
= V C

ij (r) + V BM
ij (r)

where V BM
ij (r) = Aij exp(−Bij) −

cij

r6
and V C

ij (r) =
qiqje

2

r
• Short range term VBM (falls off faster than ≈ 1

r3 ), is truncated and
shifted

VBM(rij) =

{

VBM(rij) − VBM(rcut) if rij ≤ rcut

0 if rij > rcut

- Value of rcut consistent with energy conservation and computational
efficiency
• Long range term VC , Coulomb interaction, requires special methods
for computation (Ewald method, etc) Classical MD GDR-VERRES, May 2011 – p.19/62



Coulomb interaction : Ewald method
Total electrostatic energy of a system of point charges (PBC) :

V Coul. =
∑

n

N
∑

i=1

N
∑

j=i+1

qiqj

|rij + nL| a conditionally convergent series

Ewald approach : widely employed method to compute V Coul.

δ+
δ−

ρ

−ρ
k

k

ρk(r) =
α3

π3/2

N
∑

i=1

qi exp(−α2|r−ri|2)
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Coulomb interaction : Ewald method (2)
Splitting of the Coulomb potential in a sum of two fast converging
contributions :

V Coul. =
1

2

∑

i6=j

qiqj
erfc(

√
αrij)

rij
− (α/π)

1

2

∑

i

q2
i

+
1

2

∑

k6=0

∑

i,j

4πqiqj

Ωk2
exp [ik · (ri − rj)] exp

(−k2/4α
)

Practical aspects : α, kmax,
rew
cut chosen in order to ensure a

good balancing of the error and of
the computation time in both real
and reciprocal space for a given
specified accuracy.
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Neighbour list
• Forces calculation is the most CPU time consuming stage in a MD
run.
e.g. for a short range pair-potential, such u(2)(rij) = 0 if rij > rcut, CPU time ≈

1

2
N(N − 1)

• The speed of the code is improved if one constructs list of nearest
neighnbor pairs‘; Verlet scheme, cell list method, etc...

rcut

rv

i

Verlet scheme :
- 1st MD step : construction of a neighbour list
for each particle i, i.e. of all pairs (i, j) such that
rij ≤ rv

- next MD steps : only pairs appearing in the list
are checked in the force routine
- list refreshing : when a particle has moved
by more than (rv − rcut)/2 or after of a given
number of steps, depending on the ’skin’ width
(rv − rcut) and temperature
⇒ reducing the CPU time, scaling now with N

instead of ≈ N2
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Thermodynamic quantities : equation of state

Routinely calculated, by time averaging < A >M= 1
M

∑M
t=1 At over M time

steps:
- total energy , conserved quantity apart from errors due to the integration
algorithm, cut-offs and round-off errors,

E = Ekin + U

-temperature T

< T >=
2 < Ekin >

(3N − 3)kB

⇔< Ekin >= 〈
N
∑

i=1

miv
2
i

2
〉

- instantaneous pressure P , from virial theorem :

P =
NkBT

V
+

1

3V

N
∑

i=1

ri∇riU

For a pairwise force field : P =
NkBT

V
+

1

3V

∑

i<j

rijfij
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Estimating errors

For a given model, computer simulation generates "exact" data if
one can perform an infinitely long simulation.

Or, in practice, one usually don’t carry out such a simulation!

Consequence : the simulation results are subjected to statistical
errors, which may (and have to) be estimated.

• Statistical errors : static properties

correlation function

• Block averages
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Estimating errors : static properties

Given a simulation of total length T = Nδt and an observable A
"Time" average

AT =
1

T

∫ T

0

A(t)dt =
1

N

N
∑

i=1

Ai

Ergodic hypothesis : lim
T→∞

AT →< A >, i.e. ensemble average

Estimating the variance in AT :

σ2(AT ) =
1

N
σ2(A) – if Ai were statistically indepedent

Or configurations are stored quite frequently, i.e. they are highly correlated.

⇒ σ2(AT ) =
2NA

N
σ2(A)

with 2tcA = 2NAδt a ’correlation time’, i.e. the time for which the correlation
persist.
Problem : tcA is unknown before starting the analysis of the results!!
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Estimating errors : static properties(2)

Solution : Block analysis, i.e. break down the set of configurations into a series
of nb blocks of tb succesive steps : N = nbtb

< A >b=
1

tb

tb
∑

i=1

Ai and σ2(< Ab >) =
1

nb

nb
∑

b=1

(< A >b − < A >)2

Expectation : σ2(< Ab >) ≈ s
1

tb
when tb large.

tb

tb tb

s

s = lim
tb→∞

tbσ
2(< Ab >)

σ2(AT )
s – the ’statistical inefficiency’

⇒ σ(AT ) ≈
√

s

N
σ(A)
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Time dependent properties

Time dependent properties computed as time correlation coefficients

CAB =
1

M

M
∑

i=1

AiBi ≡< AiBi >⇔ CAB(t) =< A(t)B(0) >

Expected behavior : CAB(0) =< AB > and CAB(t) =< A >< B >

when t → ∞
Usually one defines a correlation or relaxation time, τc, the time taken to
loose the correlation

Simulation time T should be significantly longer than τc

In practice, use different time origins improve the accuracy when computing

a time depedent quantity : CAA(t) =
1

M

M
∑

j=1

A(tj)A(tj + t)
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2nd Part : Different Ensembles

NVE

NVT

NPT
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NVE- microcanonical ensemble

NVE is the natural ensemble in an MD simulation, i.e. a
computational method to propagate a system along a path of
constant energy in the phase space.

Constants of motion : N , V , E =< H =
∑

i
1
2
miv

2
i + U(rN) >,

and Ptot =
∑N

i=1 mivi = 0

To adjust the system to a given energy, reasonable initial
conditions are supplied and then energy is either removed or
added, usually by an adhoc reajustement of the velocities.

In practice : (1) one performs equilibrations until an average
temperature (or equivalently the desired energy), is
reached;
(2) one performs NVE production run
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NVE (2)

The total energy in an NVE-MD simulation is not constant : due to
cutoffs and approximation when integrateting the eqs of motion, to
round-off errors, it fluctuates around a mean value, at the best,
and, at long times, this might introduce a drift

"Advantage" of having a finite size system : fluctuations of the
intensive properties, e.g. temperature ⇒ specific heat CV

< δE2
kin >

< E2
kin >

=
2

3N

(

1 − 3NkB

2CV

)
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NVE (3) - MD of a liquid NS2 at 3500 K

Sodium disilicate (NS2) : Na2O - 2 SiO2, 450 atoms, BKS-like
potential, Horbach et al. Chem. Geol. 174 81 (2001)
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(1) Equilibration run (2) NVE run
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NVT- canonical ensemble

The system is coupled to an external heat bath imposing the
target T

Various thermostats : Andersen, Nosé-Hooever, Berendsen, . . .

• Andersen thermostat - atomic velocities are periodically reselected
at random from the Maxwell-Boltzmann distribution (like an occasional
random coupling with a thermal bath)
• Berendsen thermostat : corrects deviations of the T (t) from the
target T0 :

vi → λvi, with λ = [1 +
δt

τT
(
T0

T
− 1)]1/2

τT - coupling time constant, ∝ time scale on which the target
temperature is reached.
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NVT (2)

• Nosé-Hoover thermostat - introduction of an additional variable, ν
representing the heat bath and having the effect to renormalise the
time :

r′i = ri ,p
′

i = pi/ν , ν′ = ν , t′ = t/ν

with t′ is the real time and t is the virtual one, etc. The extended
Lagrangian of the new system [Nosé , JCP 81 (1984)]

LNosé =
∑

i

1

2
miν

2ṙ2i − V ({ri}) +
1

2
Qν̇2 − g

kBT
ln ν

Q - effective "mass" associated to ν, g = 3N + 1 - nb of degrees of
freedom of the system. ⇒ eqs of motion drawn from the resulting
Hamiltonian

HNosé =
∑

i

1

2
miν

2ṙ2i + V ({ri}) +
pν

2Q
+

g

kBT
ln ν
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NPT- isobaric-isothermal ensemble

The system is coupled to a barostat imposing the target pressure
P (and to an external heat bath imposing the target T )

Various barostats : Andersen, Berendsen, Parrinello-Rahman

Andersen barostat : → simulation box with variable volume, but
fixed shape
- introduction of an additional variable, the volume V and use of
reduced units : si = ri/V1/3

- the equations of motion are drawn from

H =
1

V2/3

∑

i

p2
i

2mi
+

M
∑

i<j=1

U(
{

V2/3si

}

) +
1

2
M V̇2 + PV
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NPT (2)

Berendsen barostat :
dP (t)

dt
=

1

τp
(P − Pbath) with scaling

r′i = λ1/3ri, and λ = 1 − κ δt
τP

(P − Ptarget)

Parrinello-Rahman method
- generalization in order to change both volume and cell shape
- appropriate to study structural phase transitions in crystaline
solids
Parrinello & Rahman - PRL, 45 1196 (1980), and J. Appl. Phys. 56
7182 (1981)

• the isothermal compressibility can be calculated

< δV 2 >NPT=< V 2 > − < V >2= V kBTκT
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3rd Part : Computing properties
Structure : gαβ(r), coordination zαβ, total structure factor S(q)
(neutrons and X-ray), partial structure factors Sαβ(q), bond angle
distribution (BAD), rings, ...

Dynamics : diffusion constants

Auto-correlation functions, vibrational density of states

Dependence on cooling rate, potential
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Structure : pair distribution functions (PDF) gαβ(r)

dnαβ = nb. of atomic pairs (α, β ) separated by

a distance btw r and r + dr

dnαβ =
Nαβ

V
gαβ(r)4πr

2dr

Nαβ =







Nα (Nα − 1) if α = β

NαNβ if α 6= β

Or alternatively, using the local (particle) density :

ραβ(r) =

Nα
∑

i=1

Nβ
∑

j=1,j 6=i

δ(r − ri + rj) ⇒ gαβ(r) =
V

Nαβ

〈ραβ(r)〉(2)

Classical MD GDR-VERRES, May 2011 – p.37/62



PDF gαβ(r) - recipe for computing (1)
dr=box/(2*nbins) bin size

do i =1, nbins nbins, total nb of bins

gab (i)=0

enddo

ncfg=0

1 [Reading positions]

ncfg=ncfg+1 reading a configuration

do i =1, napart loop over all pairs (α, β)

do j =1, nbpart

dx=x(i) - x(j)

dx=dx-anint(dx/box)*box periodic boundary conditions

idem dy =y(i)-y(j), dz=z(i)-z(j)

r=dx*dx+dy*dy +dz*dz

r=sqrt(r)

ig=nint(r/dr)

gab (ig)=gab (ig)+1

enddo

enddo

go to 1 (see next page) Classical MD GDR-VERRES, May 2011 – p.38/62



PDF gαβ(r) - recipe for computing (2)

And finally gαβ calculation

factor=box**3/(4*pi*napart*nbpart)/ncfg

do i =1, nbins

r=dr*i

vdr=(dr*r**2)

gab (i)=gab (i)*factor/vdr

write(10,*)r, gab (i)

enddo
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PDF → coordination

Liquid silica - A. Carré, PhD thesis

1 2 3 4 5 6
r[Å]

0

1

2

3

4

5

6

7

8

9

10

g ij(r
)

CPMD
BKS

SiO

OO
SiSi

1 1.5 2 2.5 3 3.5 4
r[Å]

0

1

2

3

4

5

6

C
oo

rd
in

at
io

n 
nu

m
be

r 
(Z

αβ
(r

)) ZOSi
ZSiO

rmin=2.36Å

PDF → zαβ, pair coordination number, (#neighbors β surrounding an atom α

within a distance r ≤ rmin )

zαβ =
Nβ

V

∫ rmin

0

4πr2gαβ(r)dr

(i.e. a geometrical criterion)
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Distribution of the pair coordination number (3)

BKS-like potential, A. Winkler, PhD thesis (2002)
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The introduction of Na atoms affects the local coordination of the SiO network
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Bond angle distribution (BAD)

Recipe : for computing the Pαβγ distribution look after the α and γ neighbors of
β so that rαβ ≤ rmin and rβγ ≤ rmin (don’t forget the PBC!)

SiOSi

OSiO

60 80 100 120 140 160 180
θ (°)
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0.040

P
αβ

γ(θ
)

CPMD
BKS
CHIK

OSiO SiOSi

T=3600K

300K

exp.

CHIK potential - a BKS-like potential with parameters adjusted on ab initio data
Carré et al. EPL (2008)
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Rings
probability to find a ring of length n (n = 2, 3, . . . , 14) (don’t forget the PBC!)

Ring of size n = 4

0 2 4 6 8 10 12 14 16
ring length n

0.0

0.1

0.2

0.3

0.4

P
(n

)

SiO2 T=3000K
NS5 T=3000K
NS3 T=3000K
NS2 T=3000K

• The introduction of Na atoms affects the local structure of the SiO network as
well as that on intermediate length scale
BKS-like potential, A. Winkler, PhD thesis (2002)
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Pressure, P = P (T )
Example : occurrence of a density maximum at 1820 K of amorphous SiO2,
seen in P = P (T )

2000 3000 4000 5000 6000
T (K)

0.0

0.5

1.0

1.5

P
 (

G
P

a)

ρ=2.37g/cm
3
 (BKS)

ρ=2.2 g/cm
3
 (CHIK)

Both BKS and CHIK show a minimum pressure at about 4800 K and
2300 K, respectively, but the CHIK data are in better agreement with
experiment with respect to the location of the minimum and the density.
[Carré et al. EPL (2008)] Classical MD GDR-VERRES, May 2011 – p.44/62



Reciprocal space : partial structure factors

Sαβ(q) =
fαβ

N

〈

Nα
∑

i=1

Nβ
∑

j=1

exp [iq · rij]
〉

fαβ = 1/2 for α 6= β, fαβ = 1 for α = β

• Effect of introducing Na atoms :
from SiO2 to NS5, NS3 and NS2
MD simulation with a BKS-like potential,
A. Winkler, PhD thesis (2002)
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Remark : when using PBC, results could not depend on the choice of a particular

particle image, i.e. the allowed wavevectors are quantized q = 2π
L
(nx, ny, nz),
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Reciprocal space : comparison to experiments

• Neutron total structure factor : Sn(q) =
1

∑

α cαb2α

∑

α,β

bαbβSαβ(q)

bα neutron scattering lengths, cα = Nα/N
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Horbach et al. Chem. Geol. (2001)
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Reciprocal space : comparison to experiments (2)
• X-ray structure factor (fα - form factors) :

Sn(q) =
1

∑

α cαfα(q/4π)

∑

α,β

fα(q/4π)fβ(q/4π)Sαβ(q)

MD simul. BKS-like potential
Albite (Ab) - NaAlSi3O8, Jadeite (Jd) -NaAlSi2O6

S. de Wispeleare, PhD thesis (2005)
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Dynamics : MSD

Simplest quantity : Mean Square Displacement (MSD) of particles of type α

〈

r2
α(t)

〉

=
1

Nα

Nα
∑

l=1

〈|rl(t) − rl(0)|2
〉

, rl(t)− uncorrected PBC position

Main regimes for a liquid :

1. short time scale → ballistic regime :
〈

r2
α(t)

〉 ∝ t2

2. intermediate time scale → a plateau-like region due to cage effect, and
becoming more pronounced with decreasing temperature

3. long time scale → diffusive regime :
〈

r2
α(t)

〉 ∝ t

Main regimes for a glass (at temperatures < Tg) :

1. short time scale → ballistic regime :
〈

r2
α(t)

〉 ∝ t2

2. a plateau region : particles oscillate around their equilibrium positions
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Dynamics : MSD (2)

Example : Liquid silica, BKS
potential (A Carré, PhD
thesis, 2007)
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MSD of silicon atoms, [Hor-
bach & Kob, PRB 60, (1999)]
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Dynamics : Diffusion constant

Self-diffusion constant Dα : Einstein relation (long time scale)

lim
t→∞

〈

r2
α(t)

〉

t
= 6Dα

Activation energies : Dα ∝ exp
(

−Ea,α

kBT

)

(Arrhenius plot of Dα)

BKS - like potential
[Horbach et al. Chem. Geol.
(2001)]

Classical MD GDR-VERRES, May 2011 – p.50/62



Diffusion constant (2)

Temperature dependence of the O-diffusion constant (Hemmati and Angell,
2000)
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For silica : many different potentials, essentially equivalent from the structural
point of view, BUT various potentials make very different predictions for the
dynamical properties.
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Dynamics : insight into microscopic diffusion

Self part of the van Hove correlation function

Gα
s (r, t) =

1

Nα

Nα
∑

i=1

〈δ(r − |ri(t)− ri(0)|)〉〉 α ∈ {Si,Na,O} .

4πr2Gα
s (r, t) - probability to find a particle a distance r away from the place it was at t = 0
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Sodium disilicate NS2 (2100 K)
Horbach et al., Chem. Geol. (2001)
• The diffusion of sodium atoms is
discontinous, by hopping in average over
a distance r̄Na−Na = 3.3.
• At t = 45.7 ps, Na atoms have
performed 2 elementary diffusion steps
while most of the Oxygens sit in the cage
formed by the neighboring atoms and only
rattle around in this cage.
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Viscosity η

• Green-Kubo relation

η =
1

kBTV

∫ ∞

0

dt〈Ȧαβ(t)Ȧαβ(0)〉

with pressure tensor

Ȧαβ =

N
∑

i=1

miv
α
i v

β
i +

N
∑

i=1

N
∑

j>i

Fα
ijr

β
ij α 6= β

• Einstein formula:

η =
1

kBTV
lim
t→∞

〈(Aαβ(t)− Aαβ(0))
2〉

where Aαβ(t) =
∑N

i=1 miv
α
i (t)r

β
i (t) and Aαβ(t) − Aαβ(0) computed as

∫ t

0

dt′Ȧαβ(t
′) (Allen et al. 1994)
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Viscosity η (2)

• Silica - temperature dependence of the viscosity in an Arrhenius plot [Horbach
and Kob (1999)]
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• Stokes-Einstein relation kBT
ηD

= λ = const. not always a good way to convert
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Vibrational density of states (VDOS)

Fourier transform of the velocity auto-correlation function :

g(ω) =

∫ ∞

0

1

kBT

∑

j

mj 〈vj(t) · vj(0)〉 exp(−ıwt)dt ∝
∑

ν

δ(ω − ων)

wν frequencies of the normal modes
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Cooling rate dependence

The properties of the simulated glass samples depend on the cooling
rates : density, vibrational density of states, local and medium range
structure

Example:
Density of SiO2 glass at 0
K, Vollmayr et al. PRB 54
15808 (1996), using BKS
potential
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Cooling rate dependence (2)

The properties of the simulated glass samples depend on the cooling
rates : Vibrational density of states (VDOS)

Example:
VDOS of SiO2 glass at
0K, (diagonalization of the
dynamical matrix), Vollmayr
et al. PRB 54 15808 (1996),
using BKS potential
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System size : static and dynamics properties

Usually the static properties show almost no finite size effects.

Substantial finite size effects are presented by the dynamic
quantities, and they become more pronounced with temperature.
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Finite size effects : vdos
At small ν , g(ν) is expected to scale like ν2 , (Debye); many glass-forming
systems shown an anomalous increase of g(ν) over the Debye-level ⇒
Boson peak

SiO2 glass, BKS potential, Horbach
et al. J.Phys. Chem. B (1999)

Even for the largest systems
g(ν) does not show the
expected Debye behavior at
small ν

⇒ Strong dependence of g(ν)
on system size and on cooling
rate
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MD codes

How does one choose a code for performing MD ?
Some criteria :

the chemical composition of the system and phenomena under
consideration ;

the properties we are interested in ;

trade-off between accuracy, performance, and computational
effort

distribution : freeware or commercial

platforms and/or computer facilities at hand

user-friendly or not

Some codes used by the physics/biophysics/chemistry
communities :

DL−POLY, LAMMPS, GROMOS, CHARMM, NAMD, POLY-MD

home-made codes
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Summary

MD simulations : an unified study of the physical properties :
thermodynamic, structural, dynamic, and transport properties

Direct link between potential model and physical properties

Complete control on the input, initial and boundary conditions

Access to atomic trajectories

Don’t forget the various approximations, conventions, etc. when
discussing the reliability of the MD results

Glasses are overall quite difficult to simulate : potential equivalent
for the structure give completely different dynamical results!
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Further reading : a non-exhaustive list
M. P. Allen and D. J. Tildesley,
"Computer Simulation of Liquids" (Clarendon Press, Oxford, 1987)

D. Frenkel and B. Smit,
"Understanding Molecular Simulation From Algorithms to
Applications"

D.W. Hermann,
"Computer Simulation Methods"

K. Binder and W. Kob
"Glass Materials and disordered solids: an introduction to their
statistical mechanics"

. . .

Classical MD GDR-VERRES, May 2011 – p.62/62


	
ed {{large Outline}}
	Introduction~: Computer simulations
	Computer simulations - {	extit {in silico}} experiments
	Computer simulation techniques
	
	MD principle
	Integrator
	Integrator (2)

	Integrators~: careful choice of $delta t$
	Flowchart for a typical run of an MD program
	A MD simulation study for network glasses 
	Choice of the interatomic potential $mathcal U (mathbf r^N)$

	Interatomic potential $mathcal U (mathbf r^N)$~:
{�lue {Classical}} approach 
	MD simulations of network glasses
	Classical approach~: an example
	Periodic Boundary Conditions (PBC)
	 PBC (2)

	Interaction potential~: spatial extent
	Coulomb interaction~: Ewald method
	Coulomb interaction~: Ewald method (2)
	Neighbour list
	Thermodynamic quantities~: equation of state
	Estimating errors
	Estimating errors~: static properties
	Estimating errors~: static properties(2)
	Time dependent properties 
	
	NVE- microcanonical ensemble
	NVE (2)
	NVE (3)
- MD of a liquid NS2 at 3500 K
	NVT- canonical ensemble
	NVT (2)
	NPT- isobaric-isothermal ensemble
	NPT (2)
	
	Structure~: pair distribution functions (PDF)
$g_{alpha �eta }(r)$
	PDF $g_{alpha �eta }(r)$
- recipe for computing (1)
	PDF $g_{alpha �eta }(r)$
- recipe for computing (2) 
	PDF $	o $ coordination
	Distribution of the pair coordination number (3)
	Bond angle distribution (BAD)
	Rings
	Pressure, $P=P(T)$
	Reciprocal space~: partial structure factors
	Reciprocal space~: comparison to experiments
	Reciprocal space~: comparison to experiments (2)
	Dynamics~: MSD
	Dynamics~: MSD (2)
	Dynamics~: Diffusion constant
	Diffusion constant (2)
	Dynamics~: insight into microscopic diffusion
	Viscosity $eta $
	Viscosity $eta $ (2)

	Vibrational density of states (VDOS)

	Cooling rate dependence
	Cooling rate dependence (2)
	System size~: static and dynamics properties
	Finite size effects~: vdos
	MD codes
	Summary
	Further reading~: a non-exhaustive list

