

Applications médicales du matériau verre

J.M. Nedelec

Clermont Auvergne INP & IUF Institut de Chimie de Clermont-Ferrand

La maladie des os de verre

L'ostéogenèse imparfaite « osteogenesis imperfecta »

Michel Petrucciani 1962 -1999

« Incassable » Night Shyamalan 2000

L'Os : tissu conjonctif

Il existe deux types structuraux de base pour l'os :

compact et spongieux

L'Os : matériau composite

Le squelette n'est pas figé :

- Ostéoclastes dégradent l'os ancien
- Ostéoblastes synthétisent la nouvelle matrice minéralisée

Organisation Hiérarchique dans l'Os

Level 6: Spongy vs Compact Bone

Level 4: Fibrils/Fibers Array Patterns

Level 2: Mineralized Collagen Fibril

200m

Level 3: Fibril Array

Level 1 : Major Components, *i.e.* Hydroxyapatite (HA) Crystals and Collagen Molecules

N. Nassif (LCMC Paris)

S. Weiner et al. Ann. Rev. Mater. Sci. (1998) ; L. Besseau et al. J. Mol. Biol. (1995)

La problématique

Effet du vieillissement

50 70 Age (years) 90

20

30

Pathologies des os

- L'ostéoporose
- L'ostéopétrose
- La maladie de Paget
- Le cancer
- Fractures / Trauma

Os ostéoporotique

Céramiques Bioactives

Le concept de **matériaux Bioactifs** est intermédiaire entre matériaux bioinertes et biorésorbables.

"Un matériau bioactif est un matériau qui induit une réponse biologique spécifique à l'interface avec le matériau, réponse qui a pour conséquence la formation d'une liaison entre les tissus et le matériau."

Cristallisées: HAp

Amorphes : Bioverres

Bioactivité = fonction (composition)

Lien interfacial fort

Premier matériau synthétique Bioactif : 45S5

Hench L.L., J. Am. Ceram. Soc. (1991) 74(7) 1487-1510

Applications

Remplacement des os de l'oreille interne

Les matériaux bioactifs présentent de bien meilleurs résultats que les bioinertes

Fig. 19. (A) Schematic of bioactive glass (45S5) ossicular replacement prosthesis bonding to stapes footplate (left) and the eardrum (right). (B) Actual prostheses.

Fig. 20. Survivability comparison of bioinert implants. Class B bioactive implants (synthetic HA) and class A bioactive glass implants (45S5) used to replace middle-ear bones. (Analysis courtesy of Keith Lobel, University of Florida.)

Préservation de la machoire après extraction de dents (ERMI)

L'implant est très stable

NORAKER®

THE BIOGLASS® COMPANY

GlassBone®

Granules

GlassBone[®]

Traitement de la sensibilité dentaire

 immédiatement après application du dentifrice les particules de bioverre adhèrent à la dentine, les microtubules sont visibles et très exposés

(b) 5 jours après, la surface est complètement recouverte par de l'apatite et les tubules protégés

SENSODYNE REPAIR

```
(c) image du produit commercial
```

Figure 13 – Images en microscopie électronique à balayage de dentine traitée au moyen d'un dentifrice contenant des microparticules de bioverre Novamin[®] (taille de la barre d'échelle : 1 micromètre) et produit commercial (adapté avec permission d'après [73])

Processus physico-chimique

1) Dealkalinisation de la surface

3) Formation d'une couche amorphe Ca-P-Mg; Îlots apatitiques

2) Migration des ions à la surface du verre

4

4) Croissance d'une couche d'apatite biomimétique

Bioverres par Chimie Douce

- contrôle de la porosité/morphologie

Cartographie chimique

B67,5 Mg5

1st step Homogeneous concentrations of Si, Ca, P, Mg inside the grain

Cartographie chimique

B67,5 Mg5

Cartographie chimique

B67,5 Mg5

<u>3rd step</u> Grain totaly transformed into calcium phosphate

Evolution of Ca/P in the periphery

 $R_{Ca/P} = A \cdot \exp\left(-\frac{t}{\tau}\right) + R_{\lim}$

Interaction time in DMEM (days)

Evolution of Ca/P in the periphery

Interaction time in DMEM (days)

$$R_{Ca/P} = A \cdot \exp\left(-\frac{t}{\tau}\right) + R_{\lim}$$

Evolution of Ca/P in the periphery

Interaction time in DMEM (days)

$$R_{Ca/P} = A \cdot \exp\left(-\frac{t}{\tau}\right) + R_{\lim}$$

Formation of APATITE

Other doping elements

Element	Dissolution	CaP layer Kinetic Stoechiometry	Dopant	Reference
Ρ	Delayed	Delayed ©	Incorporation	J. Phys. Chem. C 2008, 112, 9418.
Mg Bactericidal Anti inflammatory	Delayed	Delayed ©	Incorporation Release	PCCP 2009, 11, 10473
Sr Anti osteoporosis Anti inflammatory	Delayed	Delayed ©	Incorporation Release	Chem. Mat. 2008, 20, 4969 J. Mat. Chem. (2009), 19, 2940
Zn* Bone formation Anti inflammatory	Delayed	Delayed ©	- Release	J. Phys. Chem. C 2008, 112, 13663.

Sr²⁺ delivery in solution

French Patent FR07/04952 International extension PCT/FR2008/000985

Stimulation of differentiation of osteogenic cells

Osteocalcine, Runx2, Osterix, Dlx5

J.M. Sautier, J. Isaac INSERM, Paris 7

Verres Ternaires Macroporeux

Synthese : mousses de verre²

Imagerie chimique: mousses de verre binaire

Nanoparticules

A. Lukowiak Post-Doc

A. Lukowiak et al., Chem. Commun., 49, (2013), 6620-6622 .

Hétérostructures cœur-coquille

Thèses X. Kesse, F. Vergnaud

Verre bioactif SiO₂-CaO-(CuO)

- Formation d'hydroxyapatite (HAp) en milieu biologique et relargage des ions constituants ^[1]
- Nanoparticules (NPs) par voie sol-gel
- Dopage au cuivre ^[2]

[1] Vichery et Nedelec, *Materials*, 9, 2016, 288 [2] Kargozar *et al.*, *Mater Sci Eng C* 121, 2021, 111741

NPs superparamagnétiques γ-Fe₂O₃

- Génération de chaleur (hyperthermie) sous champ magnétique alternatif^[3]
- Amélioration possible de l'adhésion, la prolifération et la différenciation des cellules osseuses ^[4]
- Aucune aimantation rémanente

[3] Wust et al., Lancet Oncol 3, 2002, 487
[4] Wang et al., J. Mater. Chem. B, 3, 2015, 4377

Les nanoparticules magnétiques (MNPs) d'oxyde de fer

Les NPs superparamagnétiques

Biocompatibles : agents de contraste IRM, traitement de l'anémie...

Synthèse par coprécipitation simple et « verte », **compatible** avec la méthode Stöber pour l'encapsulation ultérieure

Forte aimantation à saturation (M_S) et rémanence nulle

L'hyperthermie magnétique

Pouvoir chauffant SLP (W/ g_{Fe}) affecté par plusieurs paramètres :

- Intrinsèques : taille des particules, anisotropie, interactions dipolaires magnétiques
- Extrinsèques : viscosité du milieu et paramètres du champ (AMF)

 $ILP = \frac{SLP}{\mathbf{f} \times \mathbf{H}^2} (nH \cdot m^2/kg_{Fe}) \text{ pour s'affranchir des paramètres d'AMF}$

Caizer et Rai (ed.), Magnetic Nanoparticles in Human Health and Medicine, 2021 Fortin et al., European Biophysics Journal 37(2), 2008, 223-228

Synthèse des cœurs magnétiques (MNPs) et encapsulation

Effet du type de cœur et de la coquille sur le pouvoir chauffant

Merci de votre attention...