

Apport des modélisations *ab initio* pour la compréhension des propriétés structurales et dynamiques de verres borosilicatés

Laurent Pedesseau^{1,2}, Simona Ispas¹ & Walter Kob¹

¹Laboratoire Charles Coulomb Université Montpellier 2 – CNRS

²Foton - INSA Rennes

USTV – GDR Verres 2012, Montpellier

OUTLINE

- Glass composition and simulation details
- Dynamics: diffusion constants, activation energies
- Structure: liquid vs glass, pair correlation, coordinations, structure factor, etc...
- Vibrational properties. Infrared spectra
- Conclusions

Borosilicate glasses present remarquable properties: $SiO_2-B_2O_3+(Al_2O_3+P_2O_5)+alkali and/or alkaline-earth oxides+....$

high resistance to thermal shock
low thermal expansion properties and low electrical conductivity
highly resistant to corrosion

 \rightarrow real-life glasses, e.g. laboratory glassware, E-glass, heat resistant cookware

- \rightarrow glass fibre insulation materials
- → optical glasses
- \rightarrow used to immobilize nuclear waste
- \rightarrow Design and engineering: search for optimal compositions being energy- and environmentally-friendly
- \rightarrow How does boron modify the structure/integrate into the structure?

Sodium borosilicate glasses: Na₂O - B₂O₃- SiO₂ (NBS)

- Complex relationships between macroscopic properties and atomistic structure
- Use computer simulations to study the structure and dynamics

Models and simulation details (1)

- First principles molecular dynamics simulations: we need reliable results
- VASP: DFT, GGA-PBEsol functional, PAW, E_{cut} =600 eV, Γ point, NVT Nosé-Hoover thermostat, time step 1fs
- System sizes:

320 atoms → 60 Si, 180 O, 60 Na, 20 B

• Box sizes (PBC)

density = $2.51g/cm^3$, box length = 15.93 Å

- Liquid: 2 independent samples and 5 temperatures \rightarrow length of trajectories: 80-100 ps
- 6 to 8 independent glasses

Models and simulation (2)

- Production:
 - equilibrate sample at 4500K
 - cool down stepwise to lower temperatures and equilibrate
 - cool down to 300 K and anneal (2-15 ps)

T=300K (glass)

Relaxation dynamics of the NBS liquid (1)

• Use mean squared displacement (MSD) to characterize the dynamics

- \Rightarrow we can equilibrate the sample down to 2200K
- \Rightarrow MSD depends strongly on species considered
- \Rightarrow Boron dynamics seems to be complex

Liquid temperatures: 4500 K, 3700 K, 3000 K, 2500 K, and 2200 K

• Use Einstein relation to obtain the diffusion constants D_{α}

10⁻³ $E_{\Delta}^{Na}=0.74 \text{ eV}$ 10^{-4} D [cm²/s] E_A^O=1.17 eV ^B=1.11 eV 10⁻⁵ Si E_{Λ}^{Si} =1.28 eV $10^{-6}_{-2.0}$ 2.5 3.0 3.5 4.04.5 5.0 10⁴/T [K⁻¹]

 $D_{\alpha} = \lim_{t \to \infty} MSD(t) I 6t$

 Diffusion constants show Arrhenius dependence with activation energy that depends on species

 Decoupling of Na motion at low T

 Arrhenius law suggested equally by extrapolating
exp. data
Grandjean et al. PRB75 2007

•Oxygen activation energy in agreement with exp data

Cochain, PhD thesis

Liquid temperatures: 4500 K, 3700 K, 3000 K, 2500 K, and 2200 K

NBS liquid and glass: Structure (1) • Pair correlations of oxygen atoms

NBS liquid and glass: Structure (1) • Pair correlations of oxygen atoms

Coordinations of network and modifier cations

SiO_N coordination:

tetrahedral coordination dominant with decreasing temperature (*as expected*) and a large concentration of $Si_5 \sim 8\%$ in the glass due to the high quench rate

BO_N coordination shows a complex behavior with decreasing temperature

NaO_N coordination in the glass shifts to lower values w.r.t the liquid

Temperature dependence of network connectivity

→Increasing connectivity with decreasing temperature as #BO

→Silica sub-network:
quite depolymerized as
~60% of Si are in Q₃ or
Q₂ speciations

Temperature dependence of network connectivity

Increasing connectivity with decreasing temperature as #BO

→Silica sub-network:
quite depolymerized as
~60% of Si are in Q₃ or
Q₂ speciations

 Borate sub-network: the conversion of ^[3]B into ^[4]B with decreasing temperature can't be explained only by the speciation reaction ^[3]B +NBO<=> ^[4]B

NBS glass: boron-oxygen correlation

• define B-O coordination number via $g_{BO}(r) \Rightarrow {}^{[4]}B$ and ${}^{[3]}B$

- ^[4]B-O distances are larger than B^[3]-O
- in the glass we have 37% ^[4]B and 63%
 ^[3]B
- exp. data predicts ~70% ^[4]B !?!
- but exp. data also predicts: ^[4]B ↓ with ↑cooling rate

NBS glass: oxygen-oxygen correlation

Presence of B leads to splitting of O-O peak

Structure: Static structure factor (1) compute the partial static structure factors

$$S_{\alpha\beta}(\boldsymbol{q}) = \frac{f_{\alpha\beta}}{N} \sum_{j=1}^{N_{\alpha}} \sum_{l=1}^{N_{\beta}} \left\langle \exp\left[-i\boldsymbol{q}\cdot\left(\vec{r}_{j}-\vec{r}_{l}\right)\right] \right\rangle \quad \mathbf{f}_{\alpha\alpha} = 1; \ \mathbf{f}_{\alpha\beta} = 1/2 \text{ for } \boldsymbol{\alpha} \neq \boldsymbol{\beta}$$

• prepeak at around 1.2 Å⁻¹ \Rightarrow evidence that channel-like structure seen in Na₂O-xSiO₂ is also present in NBS?

Structure: Static Structure factor (2)

$$S_{\alpha\beta}(\boldsymbol{q}) = \frac{f_{\alpha\beta}}{N} \sum_{j=1}^{N_{\alpha}} \sum_{l=1}^{N_{\beta}} \langle \exp[-i\boldsymbol{q} \cdot (\vec{r_j} - \vec{r_l})] \rangle \quad f_{\alpha\alpha} = 1; f_{\alpha\beta} = 1/2 \text{ for } \boldsymbol{\alpha} \neq \boldsymbol{\beta}$$

 the Si-B correlation does not go to zero in the accessible *q*-range

→ evidence for nanophase separation in $3Na_2O-B_2O_3 - 6SiO_2?$

... hypothesis mentioned in a NMR work (Wang&Stebbins 1999)

Structure: Neutron structure factor (2)

good agreement between experiment and simulations

•peak seen in experiments around 1.5 Å⁻¹ might be two peaks

NBS glass: Vibrational density of states (VDOS)

- 3- fold and 4-fold coordinated boron atoms give rise to specific features in the density of states
- peak at 650 cm⁻¹ is mainly due to ^[3]B
- modes at high frequencies (> 1200 cm⁻¹) are also due to ^[3]B

Partial VDOS of ^[3]B units

•3- fold coordinated boron atoms give rise to specific features in the density of states

Symmetric units: ^[3]B_s

NBS glass : IR spectrum, theory vs. experiment

• w.r.t. pure SiO_2 and B_2O_3 : low-frequency band, due to Na atoms

• good agreement to exp. data for band around 500 cm⁻¹

Exp. data Kamitsos et al. JNCS 171 (1994), on similar composition

Summary: simulations of borosilicates

- role of B is highly complex
- evidence for nano-phase separation between Si and B
- vibrational signature of ^[3]B and ^[4]B are very different
- Na structure and dynamics are equally complex
- need to get more insight into the nature of the
 - vibrational modes and IR active modes

Acknowledgments

HPC facilities

NBS glass: boron-oxygen correlation

• dependence on O speciation, as well as on the nature of the 2nd network-former cation

- ^[4]B-O distances are larger than ^[3]B-O
- Almost no NBO on ^[4]B units
- ^[3]B-units with and without NBO → define <u>asymmetric</u>
 ^[3]B-units and <u>symmetric</u> ^[3]B-units, respectively