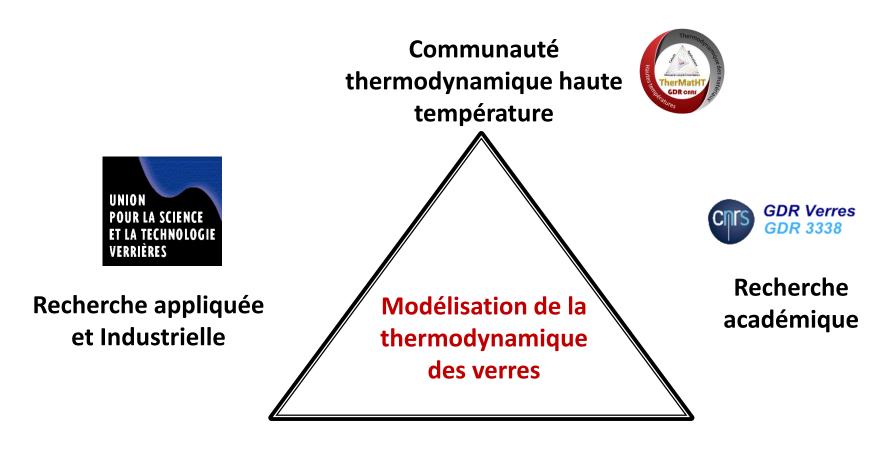
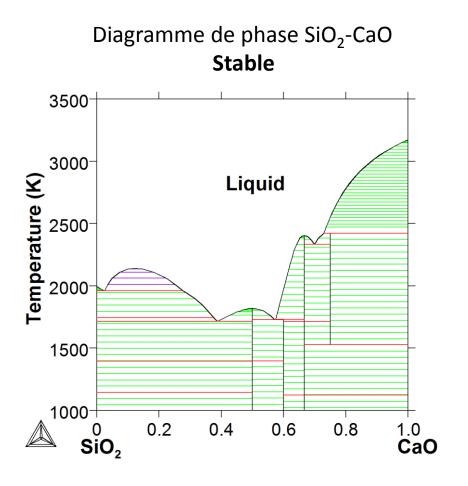


Atelier commun GDR TherMatHT **GDR Verre/USTV**


Thermodynamique des verres – 09 octobre 2017

P. Benigni, S. Gossé, G. Lelong, M. Micoulaut, D. Neuville, A. Pisch, J. Rogez, S. Schuller

Atelier thermodynamique des verres


Communauté des verres

Mise en commun des connaissances et des réflexions entre les communautés du verre et de la thermodynamique

Le verre : un système hors équilibre

Par nature le verre est un système hors équilibre Il n'existe pas ou peu de diagrammes de phases de verres prenant en compte les phases métastables

Diagramme de phase SiO₂-CaO Métastable (suspension de phases)

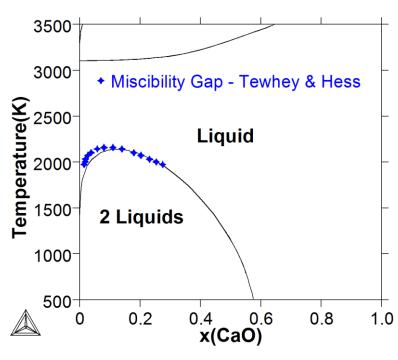
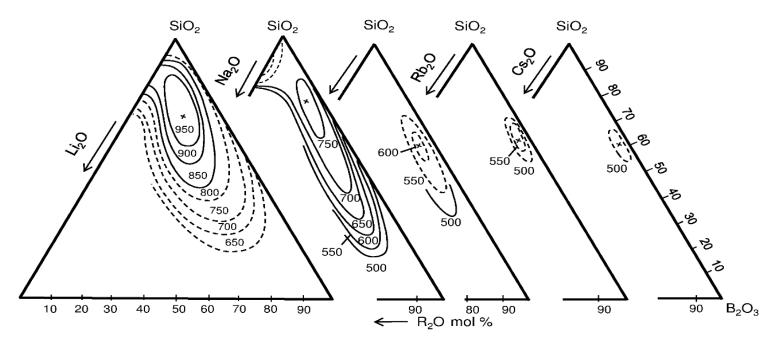



Diagramme de phase : calcul Thermo-Calc Stéphane Gossé

Le verre : un système hors équilibre

Existence de données expérimentales : Lacune de miscibilité dans les verres borosilicates d'alcalins

D'aprés Porai-Koshits, E.A., Phase separation in glass, ed. E.A.P.-K. O.V Mazurin. 1984, Amsterdam, New York; North-Holland

Pourquoi modéliser les propriétés thermodynamiques des verres (phases métastables) ?

Des objectif industriels

- Modèle qui permettrait de prédire les domaines vitrifiables et les mécanismes à l'origine de la formation d'hétérogénéités (cristallisation, séparation de phase).
- Orienter les compositions des verres en fonction des propriétés physico-chimiques recherchées.

Comment modéliser les propriétés thermodynamiques des verres (phases métastables) ?

Les questions scientifiques à résoudre

- 1. Comment décrire l'évolution des grandeurs thermodynamiques proche de la transition vitreuse ?
- 2. Méthode d'optimisation de diagrammes de phase Comment extrapoler les données du liquide (phase à l'équilibre) au liquide surfondu (métastable) et au verre (hors équilibre) ?
- 3. Quelles cinétiques de transformations de phases prendre en compte (nucléation, croissance) ?

Quelle méthodologie adoptée ?

Des objectifs scientifiques

- ✓ Développer une méthodologie pour modéliser les diagrammes de phases de verre
- ✓ Réaliser un premier calcul prenant en compte des modèles simples (verres d'oxydes)
- ✓ Complexifier le modèle (acquisitions de données thermodynamiques, cinétiques, structurales, diffusion, viscosité)
- ✓ Valider les modèles Itération

Programme de l'atelier 2016 11 octobre 2016 – Université de Marseille

- 1- Introduction de l'atelier
- 2- Représentation thermodynamique d'un système à l'équilibre
- 3- Viscosité des verres d'oxydes Lien entre structure et propriétés
- 4- Évolution des grandeurs thermodynamiques proche de la transition vitreuse
- 5- Structure des verres/liquides boratés et borosilicatés
- 6- Décrire la transition vitreuse : simulations moléculaires et approches topologiques
- 7- Prise en compte des phases vitreuses dans la description thermodynamique

Jacques Rogez - Université Marseille

Stéphane Gossé - CEA Saclay

Daniel Neuville IPGP

Pierre Benigni - Université Marseille

Laurent Cormier - UPMC

Matthieu Micoulaut - UPMC

Nicolas David IJL- Université Nancy

8- Cinétiques de démixtion et de cristallisation - Théorie

Sophie Schuller - CEA Marcoule

So to Destenetions

Destinitations

Destinitations

9- Contrôle de la démixtion et de la cristallisation dans les verres - Exemples d'applications

Programme de l'atelier du 09 octobre 2017

9h15-9h30	Exposé introductif	Sophie Schuller (CEA Marcoule)
Les modèles de description du verre		
9h30-10h30	Revue des modèles thermodynamiques de	Pierre Benigni (IM2MP, Marseille)
	description des verres polyconstitués	
10h30-11h00	Exemple d'application du "two state model"	Stéphane Gossé (CEA Saclay)
	dans les systèmes polyconstitués	
11h00-11h30	Etat de l'art sur l'extrapolation des oxydes	Alexander Pisch (SIMAP, Grenoble)
	simples dans les bases CALPHAD	
Détermination des grandeurs thermodynamiques		
11h30-13h00	Mesure et modèle de Cp	Daniel Neuville (IPGP, Paris)
	Utilisation des mesures de viscosité pour	
	déterminer les entropies de configuration	
Pause déjeuner 13h00-14h15		
14h15-15h00	Modélisation des propriétés	Matthieu Micoulaut (UPMC, Paris)
	thermodynamiques par une approche	
	topologique	
Description des paramètres d'interaction dans les liquides		
15h00-15h45	Revue des modèles (quasi-chimique, associé)	Alexander Pisch (SIMAP, Grenoble)
15h45-16h30	Utilisation des données structurales des	Gerald Lelong (UPMC,
	verres et des liquides pour décrire les	Paris)/Stéphane Gossé (CEA Saclay)
	paramètres d'interactions	
16h30-17h30 Discussion du choix des modèles et de la méthodologie à adopter pour		odologie à adopter pour modéliser le
	verre et le liquide	

Les présentations pourront être consultées sur le site du GDR TherMatHT

https://atv2017.sciencesconf.org/

Merci aux GDR verres, GDR TherMatHT, merci à l'USTV, l'IPGP, Olivier Rapaud (SPCTS Limoges)