

Basic data on glass structure and its influence on viscosity

Daniel R. Neuville - Laurent Cormier

Géomatériaux, CNRS – IPGP Université de Paris neuville@ipgp.fr

IMPMC, CNRS Sorbonne University Laurent.cormier@sorbonne-university.fr

TO_2 -MO- M'_2O , with T= Si, Al, Fe³⁺, M=Mg, Ca, Fe²⁺, M'=Li, Na, K

Properties versus Structure ?

Glasses, melts = network former + alkali or earth-alkaline elements + transition elements

What is a network modifier or charge compensator ?

Why alkaline or earth-alkaline element changes role?

What happens in the case of transition elements? Redox talk tomorrow What happens during nucleation processes?

How network former can be mixed?

How made an invert glasses?

How elaboration processes can influence glass forming ability?

Fragility and ability of glass forming?

Role of element can change as a function of their content?

Is there and universal definition of glass former?

Does the definition of glass formers depends on the type of glass systems?

Does the definition of glass formers evaluate with new analytical tools?

Does modelisation enable to get a different view of glass forming effect?

Glass is characterized by

A disordered state

Huang et al., (2012) Direct Imaging of a Two-Dimensional Silica Glass on Graphene Nano Lett. 2012, 12, 1081–1086

A glass transition temperature

Neuville D.R., Henderson G.S, Dingwell D. B. (2022) "Geological melts" Review in Mineralogy and Geochemistry. DOI : 10.2138/rmg.2022.87.02

Residual entropy = configurational entropy => image of the glass structure

Phase equilibria between melts and crystal

Linard, Neuville, Richet (1997) Thermochimie des verres stockage de dechets nucleaires: Une nouvelle approche. https://www.researchgate.net/publication/343852518

Phase equilibria between melts and crystal

Diopside CaMgSi₂O₆

Glass

PGF

CINS

PGF

Configurational entropy

How to fit viscosity ?

Arrhenius : η(T) = A.exp(E/RT) ⇔ log η= A + B/T

Yes but only for SiO₂, GeO₂, NaAlSiO₈, KAlSiO₈ because activation energy change from 2000kJ/mol at 1000K up down 300kJ/mol at 1800K for NS3.

Need TVF equation log $\eta = A_1 + B_1/(T-T_1)$

But, just a fit

Viscosity equation ?

$\sum_{Na_2O-3SiO_2}^{NS3} \eta(T) = A_e.exp[B_e/TS^{conf}(T)]$

Proposed by Adam and Gibbs, 1965

First used to silicate melts by Urbain, 1972, Wong and Angell 1976,

Scherer, 1984, Richet, 1984, ... Neuville and Richet, 1991....

$$S^{conf}(T) = S^{conf}(Tg) + \int_{T_q}^{T} Cp^{conf} / Tdt$$

 $Cp^{conf}(T) = Cpg(Tg) - Cpl(T)$

Calorimetry measurements => Easy

Configurational entropy

Calorimetrical Configurational entropy

Non-Newtonian behavior, relaxation problem?

SiO₂ covalent bond SiO₄ tetrahedra

 GeO_2 covalent bond GeO_4 tetrahedra

 B_2O_3 covalent bond BO₃ triangle and BO₄ tetrahedra

 SiO_2 covalent bond SiO_4 tetrahedra Na_2O breaks the network Viscosity decreases

GeO₂ covalent bond GeO₄ tetrahedra

 B_2O_3 covalent bond BO₃ triangle and BO₄ tetrahedra

 SiO_2 covalent bond SiO_4 tetrahedra Na_2O breaks the network Viscosity decreases

 GeO_2 covalent bond GeO_4 tetrahedra Na_2O breaks the network Viscosity decreases

 B_2O_3 covalent bond BO₃ triangle and BO₄ tetrahedra

 SiO_2 covalent bond SiO_4 tetrahedra Na_2O breaks the network Viscosity decreases

 GeO_2 covalent bond GeO_4 tetrahedra Na_2O breaks the network Viscosity decreases

B₂O₃ covalent bond BO₃ triangle and BO₄ tetrahedra Na increases BO₄ content Viscosity increases

 SiO_2 covalent bond SiO_4 tetrahedra Na_2O breaks the network Viscosity decreases

 GeO_2 covalent bond GeO_4 tetrahedra Na_2O breaks the network Viscosity decreases

B₂O₃ covalent bond BO₃ triangle and BO₄ tetrahedra Na increases BO₄ content Viscosity increases

TeO₂ ionic bonding

SiO₂ : SiO₄ tetrahedra, 3D network, high connectivity => strong liquid Alkali broke network, viscosity decreases, Tg.....

GeO₂ : GeO₄ tetrahedra, 3D network, high connectivity => strong liquid Alkali broke network, viscosity decreases, Tg.....

 B_2O_3 : BO3 triangle, 2D network, low connectivity, => fragile liquid With alkali : M_2O + BO3 => BO4 : 3D network

Structure versus properties of silicate melts

Raman spectra of SiO₂-Na₂O glass

Ca/Mg Mixing

Ca/Mg Mixing

Viscosity, log Poise

Ca/Mg Mixing

$$C_{p}^{conf} = C_{p}^{l} - C_{pg}(T_{g})$$

$$S^{conf}(Tg) = S^{mix} + \sum x_i S_i^{conf} (Tg)$$

 $S^{mix} = -nR\Sigma X_i ln X_i$ with $X_i=Ca/(Ca+Mg)$ Ideal mixing => random distribution

Neuville D.R. and Richet P. (1991) Viscosity and mixing in molten (Ca,Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta., 55, 1011-1021.

Allwardt and Stebbins (2004) Ca-Mg and K-Mg mixing around non-bridging O atoms in silicate glasses: An investigation using 170 MAS and 3QMAS NMR. American Mineralogist, 89, 777–784

total neutron structure factors

Ca/Na Mixing

M⁺, M⁺⁺ : Network modifier => produce non-bridging oxygen,

=> decrease viscosity, Tg, molar volume, .. => increase configurational entropy and disorder....

How can be change in charge compensator ?

NA75.16 peraluminous composition

In Neuville D.R., Henderson G.S, Dingwell D. B. (2022) "Magmas, melts, liquids and glasses: Experimental insights " Review in Mineralogy and Geochemistry. DOI : 10.2138/rmg.2022.87.03

Neuville D.R., Cormier L, R., Flank A.M., Prado R.J. and Lagarde P. (2004) Na K-edge XANES spectra of minerals and glasses. Eur. J Mineral, 16, 809-816.

⇒ Chemical shift of 23Na, from network modifyer to charge compensator

Losq, Neuville D.R., Florian P., G.S. Henderson and Massiot D. (2014) Role of Al3+ on rheology and nano-structural changes of sodium silicate and aluminosilicate glasses and melts. Geochimica Cosmochimica Acta, 126, 495-517.

200

400

600

800

Wavenumber (cm⁻¹)

1000

distribution

In Neuville D.R., Henderson G.S, Dingwell D. B. (2022) "Magmas, melts, liquids and glasses: Experimental insights " Review in Mineralogy and Geochemistry. DOI: 10.2138/rmg.2022.87.03

IPGP

SiO₂

SA75.12 SA63.18

SA50.25

SA33.33

SA20.40

7

8

Si0

Ca76.1

Ca70.1

Ca63.1 Ca50.25

Ca33.3 Ca29.3

Ca19.40 Ca12.4

1400

a0.50 = CA

1200

Configuration Entropy Theory log $\eta = A_e + B_e/TS^{conf}(T)$

In Neuville D.R., Henderson G.S, Dingwell D. B. (2022) "Magmas, melts, liquids and glasses: Experimental insights " Review in Mineralogy and Geochemistry. DOI : 10.2138/rmg.2022.87.03

Substitution of Si by Al in Q⁴ species along the join R=1

 $SiO_2 => Tetrahedra SiO_4$ CaAl₂O₄ => Tetrahedra AlO₄ substitution of 1 Si by 1 Al and Ca or M as charge compensator

In Neuville D.R., Henderson G.S, Dingwell D. B. (2022) "Magmas, melts, liquids and glasses: Experimental insights " Review in Mineralogy and Geochemistry. DOI : 10.2138/rmg.2022.87.02

CaO-AI2O3-SiO2 system

Neuville D.R., Cormier L. and Massiot D. (2004) Role of aluminium in peraluminous region in the CAS system. Geochim. Cosmochim. Acta., 68, 5071-5079

Neuville D.R., Cormier L. and Massiot D. (2004) Role of aluminium in peraluminous region in the CAS system. Geochim. Cosmochim. Acta., 68, 5071-5079

CaO-Al2O3-SiO2 system

RMN 750MHz, CRMHT, Orléans, ²⁷Al 1D MAS

Neuville D.R., Cormier L. and Massiot D. (2004) Role of aluminium in peraluminous region in the CAS system. Geochim. Cosmochim. Acta., 68, 5071-5079

Role of [5]Al?

^[5]Al increases with Al_2O_3 content for R=CaO/Al_2O_3<1

IPGP

Role of [5]Al ?

 $\Rightarrow [5] \text{Al increases Tg at all SiO}_2 \text{ content and for CAS, NAS and MAS glass systems.}$ $\Rightarrow [5] \text{Al can be a strong network former !}$

- D1 and D2 increase with K
- New D2 band

Losq & Neuville D.R. (2013) Effect of K/Na mixing on the structure and rheology of tectosilicate silica-rich melts. Chemical Geology, 346, 57-71.

CINIS

Na tectosilicates

Compensated Continuous

Random Network

From Greaves and Ngai, 1995

Na and K are in different structural positions \Rightarrow Two different networks \Rightarrow Non random mixing

Percolation channel !

Losq, Neuville D.R., Florian P., Massiot D., Zhou Z., Chen W., Greaves N. (2017) **Percolation channels: a universal idea to describe the atomic structure of glasses and melts**. Scientific Reports, 7, Article number: 16490, doi:10.1038/s41598-017-16741-3

replacement of Al by Ti

Composition (mol%)	SiO ₂	Na₂O	Al ₂ O ₃	TiO ₂	Ti/Ti+Al
NAT 50.25.00	50	25	0	25	1
NAT 50.25.06	50	25	6,25	18,75	0,75
NAT 50.25.12	50	25	12,5	12,5	0,5
NAT 50.25.18	50	25	18,75	6,25	0,25
NAT 50.25.22	50	25	21,88	3,12	0,125
NAT 50.25.25	50	25	25	0	0

Ti replace Al in NaAlSiO₄

- SiO₄ tetrahedra => strong network former
- BO3 triangle => soft network former
- BO4 tetrahedra => network former with M⁺
- AlO₄ tetrahedra => network former with M⁺

- SiO₄ tetrahedra => strong network former
- BO3 triangle => soft network former
- BO4 tetrahedra => network former with M⁺
- AlO₄ tetrahedra => network former with M⁺
 - SiO₄
 - AIO₄ tetrahedra,
 - BO4 tetrahedra,
 - BO3 triangle
 - => and only one M⁺

SiO2 Al2O3 **B2O3** Na20 BAN75.12.12 75 12,5 12,5 Albite 0 BAN75.10.12 10,5 75 2 12,5 BAN75.9.12 9,38 3,12 12,5 75 BAN75.6.12 6,25 6,25 75 12,5 BAN75.3.12 9,37 12,5 75 3,13 Reedmergnerit BAN75.0.12 75 0 12,5 12,5 e

BAN75-X-12 compositions

Incolored and clear glasses

Very strong decrease of Vm, viscosity, Tg and fragility increases with Al/B substitution and using link between viscosity and configurational entropy :

Log η = Ae + BeT/S^{conf}(T), we can calculte S^{conf} which goes from 8J/mol.K for up to 14.5J/mol.K with Al/B substitution

Raman Spectrometry

Group $A4: BØ_2O^$ triangles (\emptyset = bridging oxygen) linked to BO_4^-

 $A3 : BØ_2O^$ triangles linked to other **BO**₃

- With AI/B substitution => New band appear at 615, 920, 1200, 1450 cm⁻¹
- Important change in the T-O-T band vibrations
- No change in the boson peak and D1 and D2 decrease

¹¹B MAS (Echo) NMR in BAN

Borosilicate compositions

Assumption for AI/B substitution mechanism ?

10⁴/T, K⁻¹

But with Al/B substitution BO3 decreases and 2BO4 are present

- \Rightarrow BO3 decrease with B₂O₃ increases
- ⇒ 1) by substitution AI by B => B is essentially in BO3 because AI used Na as a charge compensator and BO3 decreases a lot the viscosity
- ⇒ 2) With increasing B content
 => BO4 increases and used
 Na as a charge compensator
 => viscosity decreases slowly

Effect of volatiles on properties

Effect of H_2O on properties

andesitic melts - new experimental data and a revised calculation model. Chem. Geol., 228, 233-245.

Application of Raman spectroscopy on glass and glass fiber. Fiberglass Science and Technology edt H. Li, Springer ISBN 978-3-030-71199-2.

SiO₂, GeO₂ => strong network former B₂O₃ (BO3,BO4), P₂O₅, V₂O₅, TeO₂ => soft network former

Al₂O₃, : mix... ? Al^{IV} => network former Al^V=> reticulator, need to ensure dynamics at HT Al^{VI}=> generaly network modifier...

Li₂O, Na₂O, K₂O, MgO, CaO, SrO, BaO, ZnO, FeO =>network modifier or charge compensator with T

Conclusion

The configurational entropy gives a strong idea about glass structure.

It is possible to link the "macroscopic" configurational entropy with the structure of melts determine by NMR or Raman spectroscopy.

- Ca/Mg can be mixed randomly in silicate glasses and melts
- Na⁺/Ca²⁺ and Na⁺/Sr²⁺ or Na⁺/M²⁺ are not mixed randomly in silicate and aluminosilicate glasses and melts.
- Na/K are non randomly mixed aluminosilicate glasses and melts.
- Si/Al are mixed randomly in tectosilicate glasses and melts.
- ^[5]Al is probably a good network former or reticulator

MINERALOGICAL SOCIETY OF AMERICA GEOCHEMICAL SOCIETY

ISSN 1529-6466 (print) ISSN 1943-2666 (online)

Thanks

IPGP:

E. Van Hullebusch E. Pili Maria Cicconi Dario Manara A-M Lejeune V. Magnien B. Cochain M. Lenoir Y I inard J. Moreno I Ben Kacem T. Robine R. El Hayek A. Novikov J. Amalberti E. Strukjel A. Donatini

IMPMC-Paris Laurent Cormier M. Roskosz

Ph. Ildefonse[†]

U. Toronto Grant Henderson

CEMHTI-Orléans Dominique Massiot Pierre Florian Louis Hennet

SOLEIL F. Baudelet[†] A-M Flank P.Lagarde D. Thiaudière V. Briois U. Munich **D.B. Dingwell**

K. Uwe-Hess Luiz Pereira

U. Paris J.P Attal L. Tapie

U. Saclay Matthieu Lancry Nadège Ollier

U. Rutger Ashutosh Goal

U. lena Delia Brauer

U. Grenoble A. Pisch

U. Sendai S. Sukenaga U. Bristol J. Drewitt A. Barnes

U. Montpellier B Hehlen B. Rufflet

U. Cambridge Neville Greaves[†]

U. Washington John McCloy

Bayreuth D. Di Genova

U. Erlangen D. de Ligny

U. Chicago N. Dauphas **Corning** Monique Comte Peggy Georges Tiphaine Fevre

NEG Hong Li

Baccarat Eric Brient Daniel Coillot

Arc S. Donze R. Delaval I Ben Kacem

Pochet R. Guilbault

LMV-Pyrex J. Brunie