

BORATE GLASSES

Gérald LELONG

Institut de Minéralogie, Physique des Matériaux et Cosmochimie

BORATES – TECHNOLOGICAL INTEREST

Since 1915

Glass with thermal shock resistance (Pyrex)

borosilicate glasses

Since 60's

Bioactive glasses as implant materials

Na-K-Ca borate glasses

Since 70's

High-pressure sodium vapor lamp

Alumino-borate glasses

Since 70's

Non-linear optical borate crystals

Alkali-, Rare-Earth- borates

Now

Potential solid electrolytes and cathode materials

Alkali-borates with transition elements

OUTLINE

B₂O₃ glass

Archetypal glass former

|--|

Alkali borate glasses (Li, Na, K, Rb, Cs)

Vitrification domains Alkali effects on physical properties Glass structure: short- and intermediate-range order

From glass to melt

Structure of alkali borate melts Depolymerization of the borate network

Polyamorphism

B_2O_3 VS SIO_2

An important advantage of borate glasses over silica glasses is their significantly lower melting temperature

	B ₂ O ₃	SiO ₂
Average network connectivity	3	4
Mass Density	1.844 g.cm ⁻³	2.202 g.cm ⁻³
Τ _g	260°C	1100°C
Τ _m	450°C	1728°C
Liquid viscosity (log η at 1200°C)	1.66 P	12.6 P
chemical durability	low	high
Thermal expansion ($lpha$)	161.6 × 10 ⁻⁷ K ⁻¹	5.35 × 10 ⁻⁷ K ⁻¹

- Used in combination with other oxides such as AI_2O_3 or SiO_2 , this leads to:
 - improve chemical durability,
 - decrease melting temperatures.

- \square B₂O₃ <u>does not</u> crystallize at ambient pressure : « *ideal glass former* »
- \square But two polymorphs of B_2O_3 can be formed when pressure is applied

 $d(v-B_2O_3) = 1.84 \text{ g.cm}^{-3} \ll d(B_2O_3 - I) = 2.55 \text{ g.cm}^{-3}$

Why the glass structure is less compact ?

PROPORTION OF BOROXOLS IN $V-B_2O_3$?

Why B_2O_3 does not crystallize at ambient pressure ?

 \square Predictions of crystalline B₂O₃ forms

Ferlat et al. Nat. Mater. 2012

 \square Predictions of crystalline B₂O₃ forms

At ambient pressure, the crystallization is avoided as a result of the existence of several competing phases that eventually induces the system amorphization.

\square Predictions of crystalline B₂O₃ forms

OUTLINE

B₂O₃ glass Archetypal glass former

|--|

Alkali borate glasses (Li, Na, K, Rb, Cs)

Vitrification domains Alkali effects on physical properties Glass structure: short- and intermediate-range order

From glass to melt

Structure of alkali borate melts Depolymerization of the borate network

Polyamorphism

ALKALI BORATE: VITRIFICATION DOMAINS

□ A large composition range:

- crystalline phase with unknown structures
- crystalline phase with known structures
- glass forming region

BORATE ANOMALIES

Zhong et al. JNCS 111, 67 (1989) / Shelby et al. J. Am. Ceram. Soc. 66, 225 (1982)

Expansion coefficient minimum at 20mol%

- Expansion coefficient minimum at 20mol%
- Tg maximum at 27mol%

Zhong et al. JNCS 111, 67 (1989) / Shelby et al. J. Am. Ceram. Soc. 66, 225 (1982)

- Expansion coefficient minimum at 20mol%
- Tg maximum at 27mol%
- N4 maximum around 45mol%

- Expansion coefficient minimum at 20mol%
- Tg maximum at 27mol%
- N4 maximum around 45mol%

- → The origin of these anomalies is not fully ascribable to the presence of ^[4]B...
- → Let's have a look at the crystalline samples...

Zhong et al. JNCS 111, 67 (1989) / Shelby et al. J. Am. Ceram. Soc. 66, 225 (1982)

DEPOLYMERIZATION MECHANISMS

Li₆Si₂O₇ C=1, OD Q¹ II × +↓ Li₄SiO₄ C=0, OD

+ 72

Reduction of dimensionality

CAESIUM ENEABORATE CASE

■ 90% BO₃ units

CAESIUM ENEABORATE CASE

- 90% BO₃ units
- Unique crystal containing **boroxol rings**
- \square 30% of BO₃ units involved in boroxol rings

CAESIUM ENEABORATE CASE

- □ 90% BO₃ units
- Unique crystal containing **boroxol rings**
- \square 30% of BO₃ units involved in boroxol rings
- 2 independent sub-networks

ZOOLOGY OF THE SUPERSTRUCTURAL UNITS

□ Examples of units containing ^[3]B and ^[4]B

□ Examples of units containing only ^[3]B

---- Existence of an intermediate range order in glasses ???

BORATE GLASSES – STRUCTURE

KROGH-MOE – GRISCOM MODEL

Krogh-Moe in 1962 predicted the distribution of superstructural units in sodium borate glasses as a function of Na₂O content.

SUPERSTRUCTURAL UNITS BY IR AND RAMAN SPECTROSCOPIES

Kamitsos et al. J. Mol. Struct. 347, 1-16 (1991) / Kamitsos et al. JNCS 126, 52-67 (1990)

SUPERSTRUCTURAL UNITS BY IR AND RAMAN SPECTROSCOPIES

SUPERSTRUCTURAL UNITS BY IR AND RAMAN SPECTROSCOPIES

Kamitsos et al. J. Mol. Struct. 347, 1-16 (1991) / Kamitsos et al. JNCS 126, 52-67 (1990)

SUPERSTRUCTURAL UNITS BY IR AND RAMAN SPECTROSCOPIES

Kamitsos et al. J. Mol. Struct. 347, 1-16 (1991) / Kamitsos et al. JNCS 126, 52-67 (1990)

SUPERSTRUCTURAL UNITS BY IR AND RAMAN SPECTROSCOPIES

PROBING LOCAL ORDER AND ELECTRONIC STRUCTURE

X-ray absorption spectroscopy (XAS)

- \Rightarrow High vacuum Surface sensitive High resolution (<0.2 eV)
- \Rightarrow No complex sample environments

Energy Electron Loss Spectroscopy (EELS)

 \Rightarrow Vacuum – Beam damage – Low resolution (~ 0.7 eV) \Rightarrow Access to edges at very low energies (Li), spatial resolution \Rightarrow No complex sample environments

Non-resonant Inelastic X-ray scattering (NRIXS)

- \Rightarrow Low resolution (~ 0.7 eV) Long experiments
- \Rightarrow Access to edges at very low energies (Li \Rightarrow Ne)
- \Rightarrow Various complex sample environments (high-pressure, high-temperature...)
NRIXS: A SUBSTITUTE FOR SOFT X-RAY XAS

XAS

NRIXS

For low-Z elements: soft x-rays surface sensitive vacuum condition hard x-rays bulk sensitive atmospheric condition complex sample environments

NRIXS: A SUBSTITUTE FOR SOFT X-RAY XAS

STRUCTURE OF OXIDE GLASSES USING X-RAYS

B K-EDGE IN LITHIUM BORATE GLASSES

B K-EDGE IN LITHIUM BORATE GLASSES

Modifications of the B K-edge due to the BO₃ / BO₄ ratio

EFFECT OF LI CONTENT ON THE ^[3]B/^[4]B

WHAT CAN WE LEARN FROM THE O K-EDGE ?

WHAT CAN WE LEARN FROM THE O K-EDGE ?

WHAT CAN WE LEARN FROM THE O K-EDGE ?

We need crystalline samples in order to better understand the O K-edge

O K-EDGE ON LI BORATE CRYSTALS

DFT Calculations Contribution from NBOs

Contribution from BOs

Lelong, G. et al. J. Inorg. Chem. 2014, 53(20), 10903.

O K-EDGE ON LI BORATE CRYSTALS

DFT Calculations Contribution from NBOs

Contribution from BOs

Lelong, G. et al. J. Inorg. Chem. 2014, 53(20), 10903.

O K-EDGE ON LI BORATE CRYSTALS

Energy Loss (eV)

Lelong et al. J. Inorg. Chem. 2014, 53(20), 10903.

NBO BY ¹⁷O NMR 3QMAS

Stebbins et al. Solid State Magn. Res. 16, 9-19 (2000)

GLASSES VS CRYSTALS $3Li_2O - B_2O_3$ $Li_{2}O - B_{2}O_{3}$ $Li_2O - 2B_2O_3$ -L7B3 (450°C) - LB (verre) - LB2 (verre) - Li BO (n.a.) Normalized Intensity (u.a.) — Li₂B₄O₇ (cristal) LiBO, (cristal) Normalized Intensity (eV) Normalized Intensity B K-edge B K-edge B K-edge 205 205 210 215 . 190 195 200 210 215 190 195 200 190 195 200 205 210 215 NBO Energy Loss (eV) Energy Loss (eV) Energy Loss (eV) Normalized Intensity (u.a.) **NBO** ---α-Li₄B₂O₅ — Li₂B₄O₇ (cristal) Normalized Intensity (u.a.) - LB (verre) Normalized Intensity (u.a.) LiBO, (cristal) Li BO ARCAMEDO ~w~ human mann O K-edge O K-edge O K-edge 530 545 550 545 535 540 555 530 535 540 550 555 560 560 530 535 540 545 550 555 560 Energy Loss (eV) Energy Loss (eV) Energy Loss (eV) NBO **NBO** NBO NBO diborate groups orthoborate

LITHIUM BORATES: GLASS VS. CRYSTAL

Lelong, G. et al. JNCS (2017) (submitted)

LITHIUM BORATES: GLASS VS. CRYSTAL

BORATE ANOMALIES ...

BORATE ANOMALIES ...

BORATE ANOMALIES ...

Important role of the superstructural units (medium range order)

OUTLINE

B₂O₃ glass Archetypal glass former

Alkali borate glasses (Li, Na, K, Rb, Cs)

- Vitrification domains
- Alkali effects on physical properties
- Glass structure: short- and intermediate-range order

From glass to melt

Structure of alkali borate melts Depolymerization of the borate network

Polyamorphism

BORATE GLASSES - LOW Z ELEMENTS

PERIODIC TABLE OF ELEMENTS

 \Rightarrow Tractable when working at ambient conditions (¹⁷O NMR, Soft X-ray XANES, ND, EELS, ...)

 \Rightarrow Much more complex problem under extreme conditions (HP/HT)

STRUCTURE OF BORATES VS. TEMPERATURE

NEUTRON DIFFRACTION

STRUCTURE OF BORATES VS. TEMPERATURE

NEUTRON DIFFRACTION

Total Correlation Function

Cormier et al. JACS 89, 13-19 (2006)

LITHIUM BORATES VS TEMPERATURE

NRIXS \approx XAS at B K-edge

There is a conversion ^[4]B \rightarrow ^[3]B during the heating

O K-EDGE OF LI BORATES VS TEMPERATURE

O K-EDGE NRIXS OF LI BORATES VS TEMPERATURE

B K-edge

Wan et al. Cryst. Eng. Comm. 2014

GLASS VS MELT....

□ Increasing temperature has a large impact on :

- N₄
- number of NBOs
- diffusivity of alkali ion
- density
- configurational entropy

GLASS vs CRYSTAL vs MELT

OUTLINE

B₂O₃ glass Archetypal glass former

Alkali borate glasses (Li, Na, K, Rb, Cs)

Vitrification domains Alkali effects on physical properties Glass structure: short- and intermediate-range order

From glass to melt

Structure of alkali borate melts Depolymerization of the borate network

Polyamorphism

POLYAMORPHISM: ABILITY FOR A SYSTEM TO FORM SEVERAL DISTINCT AMORPHOUS STRUCTURES OF IDENTICAL COMPOSITION.

POLYAMORPHISM: ABILITY FOR A SYSTEM TO FORM SEVERAL DISTINCT AMORPHOUS STRUCTURES OF IDENTICAL COMPOSITION.

Four-fold to six-fold coordinated Ge atom transition

Itié et al. PRL 63, 398 (1989)

POLYAMORPHISM IN GLASSY B₂O₃

POLYAMORPHISM IN GLASSY B_2O_3

With compression:

^[3]B \rightarrow ^[4]B conversion ^[2]O \rightarrow ^[3]O conversion

POLYAMORPHISM IN ALKALI BORATES

Lee et al. PRB 78, 6 (2008) / Lee et al. Rev. Mineral. Geochem. 78, 139 (2014)

Lee et al. PRB 78, 6 (2008) / Lee et al. Rev. Mineral. Geochem. 78, 139 (2014)
POLYAMORPHISM IN ALKALI BORATES

Lee et al. PRB 78, 6 (2008)

POLYAMORPHISM IN ALKALI BORATES

MULTI-STEP DENSIFICATION MECHANISM

- **1 Topological variations** (no coordination change)
- 2 Coordination change (maximum speed of conversion)
- 3 Larger energy cost of the conversion

BIBLIOGRAPHY

- Borate structures: crystalline and vitreous
 A.C. Wright Phys. Chem. Glass. 51(1), 1-39 (2010).
- Borate networks: Rigidity versus Dimensionality
 A.C. Wright Phys. Chem. Glass. 57(1), 1-14 (2016).
- **Borate glasses, crystals and melts**

A.C. Wright, S.A. Feller, A.C. Hannon Society of Glass Technology, International Conference on Borates Glasses, Crystals and Melt, eds., Society of Glass Technology, Sheffield, 1997.