

#### Bubble rising and drainage of thin films of molten glass. Application to the foam stability in glass melting

Helena Kočárková Franck Pigeonneau Surface du Verre et Interfaces Florence Rouyer LPMDI, université Paris-Est, Marne la Vallée Antoine Sellier LadHyX, Ecole Polytechnique



SAINT-GOBAIN



- Strong production of  $CO_2$ : 0.2 kg  $CO_2/1$  kg of glass:
  - 0.1 Nm<sup>3</sup>/1 kg of glass (4·10<sup>-4</sup> m<sup>3</sup>), 1<sup>st</sup> source of foam.
- Formation of large quantity of bubbles due to the small solubility of CO<sub>2</sub> (10<sup>8</sup> bulles/m<sup>3</sup>):
  - removing of bubbles.



# **Glass melting basics**

2<sup>nd</sup> stage: "fining"

#### Requirements in glass quality:

- Flat glass: < 1 bubble/20 m<sup>2</sup>  $\Rightarrow$  10 bubbles/m<sup>3</sup>;
- Container (bottle): < 1 bubble/bottle  $\Rightarrow$  10<sup>4</sup> bubbles/m<sup>3</sup>.

#### Rising of bubbles in glass:

• At T=1300°C, v = 10<sup>-2</sup> m<sup>2</sup>/s:

#### The aim of fining:

• To grow the bubbles.

Use of fining agents:

- Release of gas (O<sub>2</sub>, SO<sub>2</sub>) at high temperature:
  - 2<sup>nd</sup> source of foam.



- Experiment on bubble drainage in molten glass
- Numerical simulation of bubble drainage
- Life time of bubbles
- Stability of vertical film

 $\sigma$ U 



SAINT-GOBAIN

# Foam in glass furnaces

The stability of aqueous foams:

- Presence of surfactants.
- **No surfactant on highly viscous liquids:** 
  - "bare" films (Debrégeas et al., 1998).
- Why the glass foams exist and are stable?
  - Chemical effect?
  - Thermal effect?

G. Debrégeas, P.-G. de Gennes, and F. Brochart-Wyart Science 279, 1704-1707 (1998)





#### **Parameters**

Hydrodynamics interaction bubble/interface

• Balance between gravity and surface tension

$$D^{3}\Delta\rho g \approx D\sigma \Rightarrow Bo = \frac{\Delta\rho g D^{2}}{\sigma}$$

Balance between gravity and viscosity

$$\mu \frac{U}{D} \approx \rho g D \Rightarrow U = \frac{\rho g D^2}{\mu} \tau = \frac{\mu}{\rho g D}$$



# **Experiment – Evolution of thickness**

**Computation of thickness:** 



#### **Evolution of thickness (Fe cont. 0.01%)**



#### **Evolution of thickness (Fe cont. 0.01%)**



Rising and film drainage of a bubble close to the free surface



### Stokes equations + boundary conditions

$$div(\vec{u}) = 0,$$
  

$$\mu \nabla^2 \vec{u} - grad(P) = 0,$$
  

$$\sigma \cdot \vec{n} = (\gamma div_s \vec{n} + \rho \vec{g} \cdot \vec{x}) \vec{n}$$
  

$$\vec{u} \cdot \vec{n} = \vec{V} \cdot \vec{n}$$

#### Dimensionless form with

$$a, U_T = \frac{\rho g a^2}{3\mu}, a/U_T, U_T a/\mu$$



Stokes equations + boundary conditions  $div(\vec{u}) = 0$ ,  $\nabla^2 \vec{u} - grad(P) = 0,$  $\sigma \cdot \vec{n} = \left(\frac{1}{Bo} di v_s \vec{n} + \vec{g} \cdot \vec{x}\right) \vec{n}$  $\vec{u} \cdot \vec{n} = \vec{V} \cdot \vec{n}$ Bond number  $Bo = \frac{\rho g D^2}{\gamma}$ 



## Integral formulation of Stokes equations

$$\vec{u}(\vec{x}_0) = \frac{1}{4\pi} \int_{S} (\frac{div_s \vec{n}}{Ca} - 12z) \vec{n} \cdot G(\vec{x}, \vec{x}_0) dS(\vec{x}) - \frac{1}{4\pi} \int_{S} \vec{u}(\vec{x}) \cdot T(\vec{x}, \vec{x}_0) \cdot \vec{n}(\vec{x}) dS(\vec{x})$$

### Boundary Integral Method

- Non conform elements
- Self adaptive time step
- Wielandt deflation to remove eigenvalues equal to 1.



#### Bubble shape



#### Bubble shape



H. M. Princen. J. Colloid Interface Sci., 18:178-195, 1963



#### Bubble shape



H. M. Princen. J. Colloid Interface Sci., 18:178-195, 1963



#### Film drainage vs time



# Thinning rate as a function of Bond number (Fe cont. 0.01% and 0.1%) + numerical simulation



## Life time





# Life time = time of drainage + time after drainage



G. Debrégeas, P.-G. de Gennes, F. Brochard-Wyart, Science, vol.279, March 1998

#### Importance of TAD at a high T





# **Chemical behavior of Na<sub>2</sub>SO<sub>4</sub>**



# Thin film experiment



# Variation of concentration and surface tension



# **Stability of vertical film**

 $\delta \gamma =$ 

- Surface tension change with the film thickness.
- From a simple model of isotherm adsorption, the surface tension can be written like

$$egin{split} & \gamma = \gamma_0 + rac{\delta \gamma}{1+h/(2k)}, \ & \left( \gamma_{\mathrm{SiO}_2} rac{y_{\mathrm{SiO}_2,0}}{y_{\mathrm{SiO}_2,0} + y_{\mathrm{CaO},0}} + \gamma_{\mathrm{CaO}} rac{y_{\mathrm{CaO},0}}{y_{\mathrm{SiO}_2,0} + y_{\mathrm{CaO},0}} - \gamma_{\mathrm{Na}_2} \mathrm{O} 
ight) y_{\mathrm{Na}_2} \mathrm{O}, \mathrm{O}. \end{split}$$





method



# Stability of vertical film

#### Lubrication model



#### **Stability of vertical film** *Numerical results*



# Conclusion

Drainage of bubble:

- Exponential decrease of the thin film:
  - ► Mobile interfaces.
- Bubble size changes:
  - Thinning rate;
  - ► Shape.
- Lifetime of bubble:
  - Occurrence of chemical processes;
  - Strong effect of
    - Glass nature;
    - ► Temperature.
  - Marangoni stabilization



#### Acknowledgments

 M. Adler, D. Neuville
 M.-H. Chopinet, P. Ferreira, J.-M. Flesselles, E. Søndergård

