Caractérisation de la diffusion : mesures par faisceaux d'ions rapides (II)

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

Thierry SAUVAGE, CNRS/CEMHTI, Orléans

MOTS CLES

Découverte des techniques IBA (Ion Beam Analysis)

Techniques IBA : Des techniques pour l'étude des mécanismes de diffusion

Exemple d'application « Diffusion He dans le verre nucléaire»

3-8 Octobre 2021 Diffusion chimique dans les phases vitreuses et liquides

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

- Fondamentaux des techniques IBA (Ion Beam Analysis)
- Mise en œuvre des techniques nucléaires et Paramètres expérimentaux
- Analyse qualitative d'un spectre de particules nucléaires
- Analyse quantitative d'un spectre de particules nucléaires
- Caractéristiques d'un spectre de particules nucléaires et simulation d'un spectre
- Exemple d'application : Mobilité de l'hélium au sein du verre nucléaire inactif SON68

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

Fondamentaux des techniques IBA (Ion Beam Analysis)

Interactions ions rapides - matière

Introduction aux techniques IBA

Quelle est l'ordre de grandeur de la profondeur analysée par techniques IBA ?

Quels rayonnements sont émis lors d'une interaction d'ions d'énergie du MeV avec la matière ?

INTERACTION IONS MATIERE

Pouvoir d'arrêt d'ions de l'ordre du MeV

$$\Rightarrow \text{ Perte d'énergie } \Delta E = \left(\frac{dE}{dX}\right)_{A_m B_n} . X \qquad (\text{keV})$$

Avec $\frac{dE}{dx}$: Perte d'énergie linéique keV / (10¹⁵ at/cm²) ou keV /(g/cm²) X Epaisseur du composé $A_m B_n$ (10¹⁵ at/cm²) ou (g/cm²)

 $\Rightarrow \text{Pouvoir d'arrêt} \qquad S_{A_m B_n} = -\left(\frac{dE}{dX}\right)_{A_m B_n} \qquad (\text{keV} / (10^{15} \text{ at/cm}^2 \text{ ou g/cm}^2))$

 \Rightarrow Epaisseur X déterminée par technique IBA $\Rightarrow 10^{15}$ at/cm²

 $N_v = \frac{N_a.\rho}{M_{A-B}}$ \Rightarrow Conversion de X de at/cm² en cm X/N_v Avec N_v : densité atomique (at/cm³)

Pour le composé $A_m B_n$ avec m+n=1 $S_{AmBn} = m. S_A + n. S_B$

N_a : Nombre d'Avogadro ρ : densité volumique (g/cm³) $M_{A_mB_n}$ Masse moléculaire (g)

S(E) primordial pour la définition de résolution en profondeur des techniques IBA Il est dépendant du milieu traversé et du couple Masse et Energie du projectile

- Haute E Ion incident épluché de ses électrons, Charge ponctuelle Z_1 e, Interaction par potentiel coulombien avec électrons atome cible
- Energie de l'ordre du MeV / uma Compétition entre capture et ionisation de l'ion incident, Pic de Bragg,

- Basse énergie Neutralisation de l'ion et formation d'une quasi-molécule. Perte d'énergie par réarrangement des niveaux électroniques lors de formation de la quasi-molécule

+ Capture par réaction nucléaire

Qui est majoritaire de S_{Nucléaire} + S_{Electronique}?

Particules α dans Or

Particules protons dans Or

A 2 MeV, $\frac{S_{Electronique}}{S_{Nucléaire}} = 720$ Quelle que soit E, $S_{Electronique} > S_{Nucléaire}$

 $[S_{Elec.}]_{Alphas} > [S_{Elec.}]_{Protons}$

Formule de Bethe

 $\left(\frac{dE}{dX}\right)_{Elec} \propto Z_1^2 Z_2$ Z_1 : Numéro atomique du projectile Z_2 : Numéro atomique de l'élément cible

6

Notion de parcours

2 MeV ⁴He dans Or

Implantation de l'ion dans le matériau quand v = 0

Parcours projeté

$$R_p(E_0) = \int_0^{E_0} \left(\frac{1}{S(E)}\right) dE$$

Rp = 2,9 ± 0,3 μ **m** = (17,1 ± 1,8).10¹⁸ at/cm²

Ordre grandeur Profondeur analysée par IBA = qq µm (alphas) à qq dizaines de mirons (protons)

Notion de Straggling en énergie d'ions de l'ordre du MeV

Fluctuations statistiques du transfert d'énergie

 $(E_0 + \Delta E) \pm \sigma$

 $\sigma_{Bohr}^2 = 260.Z_1^2.Z_2.\Delta x$

 Δx Epaisseur [10¹⁵ atomes / cm²]

- ⇒ Valide pour perte d'énergie intermédiaire
- ⇒ Distribution d'énergie gaussienne
- \Rightarrow Noyaux pénétrant dans gaz d'électrons libres ET v _{Noyau} >> v_{e-}
- \Rightarrow Effet S(E) négligé

Détériore la résolution en profondeur des techniques IBA

Connaissance des pouvoirs d'arrêt ⇒ Primordial pour la quantification des spectres IBA

Expériences

P. BAUER Nucl. Inst.and Meth. B45 (1990) 673-683

Précision du pouvoir d'arrêt SRIM < ± 5% Meilleure pour ions H et He

Logiciel SRIM (Stopping and Range of Ions in Matter)

Simulation Monte-Carlo avec tirage aléatoire du paramètre d'impact pour chaque ion

JF Ziegler and JP. Biersack WWW.SRIM.ORG

INTRODUCTION DES TECHNIQUES IBA (ION BEAM ANALYSIS)

⇒ Classement en sous ensembles de spectroscopies

Spectroscopie de rayons X Spectroscopie de rayons γ Spectroscopie de particules nucléaires

PIXE

PIGE RBS NRBS ERDA NRA

 \Rightarrow Classement en fonction de distance d'impact D_{min}

Rayon a d'écran de Thomas-Fermi par Firsov

$$a = \frac{0,8853.a_0}{\left(z_1^{\frac{1}{2}} + z_2^{\frac{1}{2}}\right)^{2/3}}$$
Avec a₀ rayon de Bohr a₀ = 0.529 Å

Si $D_{min} >> a$ Collision inélastique noyau – e⁻ PIXE Polarisation du nuage électronique Excitation électronique, ionisation

Si $D_{min} \le a$ Collision coulombienne élastique noyau – noyau RBS

Si D_{min} << a Collision élastique mais contibution du potentiel attractif du noyau **NRBS ou EBS ERDA**

 $\begin{array}{ll} \textbf{D}_{min} \rightarrow \textbf{0} & \text{Collision inélastique noyau - noyau et réactions} \\ \text{nucléaires} & \textbf{PIGE NRA} \end{array}$

REACTION NUCLEAIRE ET BARRIERE COULOMBIENNE

Différents scénarios de choc entre M₁ et M₂ en fonction du couple (D_{min}, E)

[®] Vaincre la barrière coulombienne E_b pour produire des réactions nucléaires

Produire des réactions nucléaires sur des noyaux lourds = Augmenter l'énergie du projectile

COUPLAGE DE TECHNIQUES IBA

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

- Fondamentaux des techniques IBA (Ion Beam Analysis)
- > Mise en œuvre des techniques nucléaires et Paramètres expérimentaux

Où peut on réaliser en France des expériences de caractérisation par IBA ?

Comment réaliser une analyse par spectroscopie de particules nucléaires ?

MISE EN OEUVRE DES TECHNIQUES IBA

⇒ Accélérateur CEMHTI

Pelletron 3 MV Ions H⁺, HH⁺, D⁺, DD⁺, ³He⁺, ⁴He⁺ 0.3-3 MeV 50μm to 10 mm 0,5 nA à 25μA

⇒ Trois Dispositifs expérimentaux pour IBA

Mini-Beam Line

Mots-clés : Taille faisceau 50 µm , Techniques PIXE, PIGE, RBS, ...

IBIC (Ion Beam Implantation and Channeling) experimental device Mots-clés : Techniques de canalisation NRA and RBS

DIADDHEM setup (**DI**spositif d'Analyse de la Diffusion du Deutérium et de l'HElium dans les Matériaux)

Mots-clés : **Techniques** NRA and RBS en temps reel, recuit in situ en T et sous atmosphere contrôlée

Chambres d'analyse sous vide secondaire

CENTRES IBA EN FRANCE

8 centres (CEMHTI, SAFIR, LEEL, JANNUS Saclay et Orsay, CENBG, C2RMF, ICUBE)

- Faisceau micrométrique
- Faisceau ions lourds
- MEIS
- Faisceau extrait

IBA SUR LE TERRAIN

First "chemistry data " on the moon

September 11, 1967 NASA, Pasadena, California

Picture taken by Surveyor V camera

Fe,Co,N

50 60 70 80 90 100 110

Channel numbe

Mg Si

Sensor head (7 x 6 x 5 inches, 2 kg) was lowered about 30 inches to the surface by a nylon line.

Six radiation sources (Curium 242) bombard the surface with alpha particles. Radiation detectors in the sensor head measure the energies of the backscattered alpha particles and protons from the surface.

Chemical Analysis of the Moon at the Surveyor V Landing Site 10.1126/science.158.3801.635

Chemical elements in rocks and soils of Mars Rover Sojourner / Mars Pathfinder (1996)

Alpha Particle X-Ray Spectrometer (APXS) Rover Curiosity (2011)

https://mars.nasa.gov/msl/spacecraft/instruments/apxs/ 15

SPECTRES IBA SUR VERRES

Verre MACUSANI

Spectre PIXE 2,8 MeV protons

Analyse EDX

SiO ₂	72.26(0.51)
Al ₂ O ₃	15.79(0.22)
FeO	0.54(0.05)
MnO	0.03(0.03)
MgO	0.02(0.03)
CaO	0.19(0.03)
Na ₂ O	4.29(0.14)
K ₂ O	3.83(0.06)
TiO ₂	0.07(0.06)
F ¹⁰	1.339
Total	98.35

M. Pichavant et al, Geochemical Society, Editor B. O. Mysen No.1, 1987

PIXE Grande sensibilité éléments pour intermédiaires et lourds

Spectre PIGE 2,8 MeV protons

PIGE pour éléments légers Z < 14

PIGE et PIXE = Techniques complémentaires

Signal discret \Rightarrow Pas de profil en profondeur

Cartographie sur coupe transverse de MX pour grande longueur de diffusion (>100 µm)

Autre possibilité pour PIGE

Résonance de probabilité de réactions nucléaires pour PIGE (Résolution en profondeur en fonction de l'isotope) 16 Verre VWR Borosilicate/TiO₂

Spectre RBS 2,8 MeV Alphas

Verre Float Présence de Sn 0,05 %at. / 0,2 µm

Analyse fournisseur

VWR	%at.
Si	21,28
В	5,86
Al	1,65
Na	4,68
Ca	0,01
Ba	0
Zn	1,7
K	2,73
Mg	0,01
Ti	0,94
0	61,13

Signal continu pour RBSProfil en profondeur avec résolution 10-30 nmAVECInterférences spectrales pour verres de composition complexe

La spectroscopie de particules nucléaires excelle pour la caractérisation de couches minces.

Forte complémentarité RBS et NRA

Couche SiO₂/Si Spectre NRA 0,9 MeV D⁺

PARAMETRES EXPERIMENTAUX D'UN SPECTE DE PARTICULES NUCLEAIRES

10^{3 -} 10⁴ part. détectées par seconde RBS 2 MeV (25 mm², 90 mm)

PARAMETRES EXPERIMENTAUX D'UN SPECTE DE PARTICULES NUCLEAIRES

Géométrie d'analyse ERDA

- ⇒ Géométrie IBM
- α Angle d'incidence du faisceau / Normale Cible
- β Angle de sortie particule détectée / Normale Cible
- θ Angle de diffusion

$$\alpha + \beta + \theta = 180^{\circ}$$

⇒ Angle solide de détection

 $\Omega = \frac{S}{d^2} \text{ (sr)}$

S: surface active du détecteur (mm²)

d: distance détecteur à cible (mm)

 \Rightarrow Mesure expérimentale de la charge $Q_A(C)$ d'analyse

Nombre de particules Q sur cible
$$Q = \frac{Q_A}{n.q_A}$$

n.q_e: charge de l'ion incident avec q_e la charge élémentaire (C)

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

- Fondamentaux des techniques IBA (Ion Beam Analysis)
- Mise en œuvre des techniques nucléaires et Paramètres expérimentaux
- Analyse qualitative d'un spectre de particules nucléaires

Notions de réactions nucléaires

Notions de cinématique de réactions nucléaires

Qu'est ce une réaction nucléaire ?

Peut on calculer sans expériences préalable l'énergie des produits de réactions nucléaires ?

REACTION NUCLEAIRE ET NOMENCLATURE

DEFINIR et ECRIRE UNE REACTION NUCLEAIRE

Une réaction nucléaire résulte de la collision d'une particule (protons, neutrons, ...) avec les noyaux d'une cible. Une réaction nucléaire entre une particule projectile a et un noyau cible X s'écrit

- a Particule projectile
 - X Noyau cible
 - b Particule légère Détection

Y* Noyau lourd résiduel à un état excité ou non

DIFFERENTS TYPES DE REACTIONS NUCLEAIRES

TYPE DE REACTIONS NUCLEAIRES

CINEMATIQUE D'UNE REACTION NUCLEAIRE A 4 CORPS

⇔ Conservation de l'énergie totale

 $(M_1c^2 + T_1) + M_2c^2 = (M_3c^2 + T_3) + (M_4^*c^2 + T_4)$ avec $M_4^*c^2 = M_4c^2 + E_4^*$ E_4^* Etat d'excitation de Y

- ➡ Connaissance des niveaux d'énergie d'excitation National Nuclear Data Center (www.nndc.bnl.gov)
- ⇒ Introduction du bilan énergétique Q

$$Q = (M_1c^2 + M_2c^2) - (M_3c^2 + M_4^*c^2) = T_3 + T_4 - T_1$$

 $\Rightarrow \text{ Introduction de l'énergie totale } E_T \qquad E_T = T_1 + Q$

 \Rightarrow Conservation de la quantité de mouvement $\overrightarrow{p_1} = \overrightarrow{p_3} + \overrightarrow{p_4}$

Q = 0Conservation énergie cinétique $T_1 = T_3 + T_4$ Q > 0Réaction nucléaire exoénergétiqueQ < 0Réaction nucléaire endoénergétique

Jeu de paramètres

$$A = \frac{M_1 M_4}{(M_1 + M_2)(M_3 + M_4)} \frac{T_1}{E_T}$$
$$B = \frac{M_1 M_3}{(M_1 + M_2)(M_3 + M_4)} \frac{T_1}{E_T}$$
$$C = \frac{M_2 M_3}{(M_1 + M_2)(M_3 + M_4)} \left(1 + \frac{M_1 Q}{M_2 E_T}\right)$$
$$D = \frac{M_2 M_4}{(M_1 + M_2)(M_3 + M_4)} \left(1 + \frac{M_1 Q}{M_2 E_T}\right)$$

Calcul des énergies de b et Y issues de la réaction nucléaire (Formalisme simplifié)

$$\frac{T_3}{E_T} = B \left(\cos(\theta) + \sqrt{\frac{D}{B} - \sin^2(\theta)} \right)^2 \qquad \sin(\gamma) = \sqrt{\frac{M_3 T_3}{M_4 T_4}} \sin(\theta)$$
$$\frac{T_4}{E_T} = A \left(\cos(\gamma) + \sqrt{\frac{C}{A} - \sin^2(\gamma)} \right)^2$$

CINEMATIQUE D'UNE REACTION NUCLEAIRE A 4 CORPS

Analyse de spectres IBA

D⁺ 900 keV θ=166° α=0° β=14°

α⁺ 2800 keV θ=155° α=0° β=25°

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

- Fondamentaux des techniques IBA (Ion Beam Analysis)
- Mise en œuvre des techniques nucléaires et Paramètres expérimentaux
- Analyse qualitative d'un spectre de particules nucléaires
- Analyse quantitative d'un spectre de particules nucléaires

Section efficace d'une réaction nucléaire

Pourquoi la technique RBS est une méthode absolue ?

Quelle est la sensibilité de détection de la technique RBS ?

Qu'est ce qu'une section efficace?

La section efficace différentielle $\frac{d\sigma(\tau,\theta)}{d\Omega}$ est la probabilité pour que la particule légère b issue de la réaction nucléaire soit émise à un angle θ , à l'intérieur d'un angle solide $d\Omega$, pour une énergie cinétique T de la particule incidente

Unité : barn/sr avec 1 barn = 10^{-24} cm²

$\frac{d\sigma(T,\theta)}{d\theta}$ joue sur la sensibilité de détection des techniques IBA

Qu'est ce que la section efficace Rutherford σ_R ?

Diffusion par potentiel coulombien pur ⇒ Rétrodiffusion Rutherford Ecrantage par le nuage électronique négligé Distance d'approche suffisamment grande pour forces nucléaires négligeables

ans système du laboratoire
$$\frac{d\sigma_R(T,\theta)}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4T}\right)^2 \frac{4\left[\left(M_2^2 - M_1^2 \sin^2\theta\right)^{1/2} + M_2 \cos\theta\right]^2}{M_2 \sin^4\theta \left(M_2^2 - M_1^2 \sin^2\theta\right)^{1/2}} \quad (\text{cm}^2/\text{sr}) \qquad \frac{d\sigma_R(T,\theta)}{d\Omega} \propto \frac{Z_1^2 Z_2^2}{T^2}$$

Pour RBS, la sensibilité de détection est meilleure pour les éléments lourds que pour les éléments légers

Quel est le domaine de validité de σ_R ?

Domaine de validité de section efficace de Rutherford σ_R

A Faible énergie car écrantage partiel des charges nucléaires par électrons de l'atome cible

 $\sigma < \sigma_{RUTH}$ quelques %

1 MeV alphas $\theta > 90^{\circ}$

 $\sigma / \sigma_{RUTH} = 0,998 \text{ pour O}$ $\sigma / \sigma_{RUTH} = 0,967 \text{ pour Au}$

J. L'Ecuyer, JA Davies, N. Matsunami. Nucl. Instr. and Meth. B, 160 (1979), p. 337

A Haute énergie car présence des forces nucléaires
 $σ < σ_{RUTH}$ ou $σ > σ_{RUTH}$ Facteur jusqu'à 100

⇒ Pour une analyse RBS, choisir une énergie alphas pour que la diffusion soit purement coulombienne

Sinon utilisation de sections efficaces expérimentales SIGMACALC http://sigmacalc.iate.obninsk.ru/

J.A. Leavitt, L.C. McIntyre Jr., M.D. Ashbaugh, J.G. Oder, Z. Lin, B. Dezfouly-Arjomandy, Nucl. Instrum. Meth. B 44 (1990) 260

Section efficaces expérimentales

SIGMACALC http://sigmacalc.iate.obninsk.ru/

- → Anisotropie de la section efficace de ${}^{16}O(d,p_1){}^{17}O$
- ➢ Parfois, existence d'une congruence de section efficace à un angle θ donné, ¹⁶O(d,p₀)¹⁷O
- Parfois écart important entre data, ¹⁶O(d, α_0)¹⁴N Mesure de standards pour vérification de la section efficace

QUANTIFICATION D'UN SIGNAL D'UN SPECTRE IBA

Technique PIXE

Aire sous pic photoélectrique de rayons X à l'énergie Ex de l'élément A

$A(T_1) = \left[Q.\left(N_{av}.\frac{C_A}{M_A}\right)\right]_{\text{Source}} \cdot \left[(\omega.k).\int_{0}^{T_1} \frac{\sigma(T_1)}{\sigma(T_2)}\right]_{\text{Source}} \cdot \left[(\omega.k).\int_{0}^{T_1} \frac{\sigma(T_2)}{\sigma(T_2)}\right]_{\text{Source}} \cdot \left[(\omega.k).\int_{0}^{T_2} \frac{\sigma(T_2)}{\sigma(T_2)}\right]_{Sourc$	$\left[\frac{T}{T}\right] \cdot TR_{z}(E_{X}) dT \right]_{\text{Emission}} \cdot \left[TR(E_{X}) \cdot \varepsilon_{int}(E_{X}) \cdot \Omega\right]_{\text{Détection}}$	
	 ω : Rendement de fluorescence de l'élément A k : Intensité relative de la raie E_X 	Emission
Q : Nombre de particules incidentes Source	σ (T) : Section efficace d'ionisation (cm ² /sr)	
N _{av} : Nombre d'Avogadro	S(T): Pouvoir d'arrêt de particule incidente (MeV /(g.cm ⁻²))	
C_A : Concentration de l'élément A (g/g)	$TR_z(E_X)$: Auto-atténuation photons E_X dans MX $TR_z(E_X)$	$= e^{-\mu_o(E_X).X_o}$
M_A : Masse atomique de l'élément A (g)	$\mu_{o}(E_{x})$: Coefficient atténuation dans MX à énergie E, (cm ² /g	z)
	X_0 : Epaisseur MX à traverser pour photons (g /cm ²)	

 $\varepsilon_{int}(E_X)$: Efficacité intrinsèque du détecteur

 Ω : Angle solide de détection (sr)

 $TR(E_X)$: Taux atténuation RX dans filtres devant détecteur $TR(E_X) = [TR_{ff} + (1 - TR_{ff}).e^{-\mu_{Al}X_{Al}}].e^{-\mu_{Be}X_{Be,f}}.e^{-\mu_{Be}X_{Be,d}}$ TR_{ff}: Transmission du funny filter

 X_{Al} , $X_{Be,f}$, $X_{Be,d}$: Epaisseurs Al du filtre, Be du filtre, Be fenêtre d'entrée détecteur (mg/cm²)

 $\mu_{Al}(E_X)$, $\mu_{Be}(E_X)$: Coefficient atténuation massique des photons dans Al et Be (cm²/g)

 $\mu_{Al}(E_X)$: Coefficient d'atténuation massique des photons dans Al (cm²/g)

Technique PIXE

$$A(T_1) = \left[Q.\left(N_{av}.\frac{C_A}{M_A} \right) \right]_{\text{Source}} \cdot \left[(\omega.k).\int_0^{T_1} \frac{\sigma(T)}{S(T)} \cdot TR_z(E_X) dT \right]_{\text{Emission}} \cdot \left[TR(E_X).\varepsilon_{int}(E_X).\Omega \right]_{\text{Détection}}$$

Technique PIGE

Aire sous pic photoélectrique du γ à l'énergie E γ de l'isotope i de l'élément A

$$A(T_1) = \left[Q.\left(N_{av}.\frac{C_A}{M_A} \right) f_i \right]_{\text{Source}} \cdot \left[f_{\gamma}.\int_0^{T_1} \frac{\sigma(T)}{S(T)} dT \right]_{\text{Emission}} \cdot \left[TR(E_{\gamma}).\varepsilon_{int}(E_{\gamma}).\Omega \right]_{\text{Détection}}$$

Q: Nombre de particules incidents **Source** N_{av} : Nombre d'Avogadro C_A : Concentration de l'élément A (g/g) M_A : Masse atomique de l'élément A (g) f_i : Abondance de l'isotope i de l'élément A

 f_{γ} : Fraction gamma à Eγ du produit lourd issu de la réaction **Emission** σ (T) : Section efficace de la réaction nucléaire (cm²/sr) $S(T) = -\frac{dT}{dx}(T)$: Pouvoir d'arrêt particule incidente (MeV /(g.cm⁻²))

 $\varepsilon_{int}(E_{\gamma})$: Efficacité intrinsèque du détecteur $TR(E_{\gamma})$: Taux atténuation des rayons γ dans filtres devant détecteur $[TR(E_{\gamma}), \varepsilon_{int}(E_{\gamma}), \Omega] = [\varepsilon_{exp}(E_{\gamma})]$ avec utilisation de sources radioactives étalons Ω : Angle solide de détection (sr)

Encore plus simple pour les techniques RBS, NRA et ERDA

Détection

Technique PIGE

$$\mathsf{AA}(T_1) = \left[Q \cdot \left(N_{av} \cdot \frac{C_A}{M_A} \right) \cdot f_i \right]_{\text{Source}} \cdot \left[f_{\gamma} \cdot \int_0^{T_1} \frac{\sigma(T)}{S(T)} dT \right]_{\text{Emission}} \cdot \left[TR(E_{\gamma}) \cdot \varepsilon_{int}(E_{\gamma}) \cdot \Omega \right]_{\text{Détection}}$$

Techniques RBS, NRA et ERDA

$$A(T_1) = \left[Q.\left(N_{av}.\frac{C_A}{M_A} \right) f_i \right]_{\text{Source}} \cdot \left[\int_0^{T_1} \frac{\sigma(T,\theta)}{S(T)} dT \right]_{\text{Emission}} \cdot \left[\Omega \right]_{\text{Détection}}$$

Q: Nombre de particules incidentes **Source** N_{av} : Nombre d'Avogadro C_A : Concentration de l'élément A (g/g) M_A : Masse atomique de l'élément A (g) f_i : Abondance de l'isotope i de l'élément AAA

 Ω : Angle solide de détection (st)

Détection

Analyse d'une couche mince (Section efficace non résonante) par RBS, NRA et ERDA

 $\sigma (E,\theta) \text{ et } S(T) = \text{constantes} \qquad \left[\int_{0}^{T_{1}} \frac{\sigma(T,\theta)}{S(T)} dT \right]_{Emission} = \left[\sigma(T_{1},\theta). dx \right]_{Emission}$ $A(T_{1}) = Q. \underbrace{\left(N_{av}. \frac{C_{A}}{M_{A}} \right)}_{g}. f_{i}.\sigma(T_{1},\theta) \underbrace{dx}_{Q} \Omega \qquad Si \text{ on pose } N = \left(N_{av}. \frac{C_{A}}{M_{A}} \right). f_{i}.dx \qquad A(T_{1}) = \mathbb{N} . \sigma(T_{1},\theta). Q. \Omega$ $\underbrace{at}_{g} \qquad \frac{g}{cm^{2}} \qquad N : \text{Nombre de noyaux i de l'élément A par cm}^{2}$

Sensibilité de la technique RBS

A partir de l'aire A_i du pic i

 $N_i = \frac{A_i \cdot \cos \alpha}{\sigma_R(T_1, \theta) \cdot Q \cdot \Omega} \quad (\text{At/cm}^2)$

Avec A_i Aire du pic de l'isotope i de l'élément A α Angle d'incidence du faisceau Q Nombre de particules incidentes Ω Angle solide de détection (sr) $\sigma_R(T,\theta)$ Section efficace Rutherford (cm²/sr) **Technique RBS = Méthode absolue Cas concret d'une couche mince de Pt déposé sur Si**

Paramètres instrumentaux $Q.\Omega = 1,8.10^{11}$ part.sr $\alpha = 0^{\circ}$ $X_{Pt} = 0,8.10^{15}$ At/cm² $X_{Pt} < \mathbf{\hat{a}} \mathbf{1} \mathbf{MO} = \mathbf{1,2.10^{15}}$ At/cm²

Couche ultra mince Pt déposée sur substrat Si

Temps d'analyse = 5 minutes

Pour RBS, la sensibilité de détection est inférieure à 1 MO pour les éléments lourds

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

- Fondamentaux des techniques IBA (Ion Beam Analysis)
- Mise en œuvre des techniques nucléaires et Paramètres expérimentaux
- Analyse qualitative d'un spectre de particules nucléaires
- Analyse quantitative d'un spectre de particules nucléaires
- > Caractéristiques d'un spectre de particules nucléaires et simulation d'un spectre

Génération d'un profil en profondeur

Application sur une couche mince $Ti_m Y_n$

Quel est la méthodologie de simulation d'un spectre de particules nucléaires

Caractéristiques d'un spectre RBS

3 caractéristiques d'un signal RBS d'une couche mince de $Ti_m Y_n$ / Si

- **•** Aire A_{Ti} du pic de l'élément Ti ou Y
- **2** Largeur $(\Delta T)_{Ti}^{TiY}$ du pic
- **3** Hauteur H_{Ti} du plateau de saturation

Spectre RBS 2 MeV 4He θ =166° α =0° β =14°

Caractéristiques d'un spectre RBS

3 caractéristiques d'un signal RBS d'une couche mince de $Ti_m Y_n$ / Si

• Aire A_{Ti} du pic de l'élément Ti $A_{Ti} = \frac{N_{Ti}.Q.\sigma_{Ti}(T,\theta).\Omega}{\cos\alpha}$

 N_{Ti} : Nombre d'atomes par cm² de Ti avec $N_{Ti} = m X_{TiY}$ avec X_{TiY} Epaisseur de Ti_mY_n (10¹⁵ At/cm²)

2 Largeur $(\Delta T)_{T_i}^{T_iY}$ du pic Ti

 $(\Delta T)_{Ti}^{TiY} = [\epsilon]_{Ti}^{TiY} X_{TiY} = f(k_{Ti}, S_{TiY}(T)) X_{TiY} \text{ avec } k_{Ti} = g(M_1, M_{Ti}, \theta)$

 $[\varepsilon]$: Facteur section efficace d'arrêt en keV / (10¹⁵ at/cm²)

Loi d'additivité de S $S_{TiY}(T) = m.S_{Ti} + n.S_Y$

$$\sigma_R \propto rac{1}{T^2}$$

 Θ Hauteur $H_{\text{Tiou} Y}$ du plateau de saturation Ti

 $H_{Ti} = \frac{\sigma_{Ti}(T, \theta) . \Omega . Q . \mathbf{m} . \mathcal{E}}{[\varepsilon]_{Ti}^{TiY} . \cos\alpha} \qquad \qquad \mathbf{m} : \text{Concentration Ti dans } \mathbf{Ti}_{\mathbf{m}} \mathbf{Y}_{\mathbf{n}}$ $\mathcal{E} : \text{ keV/channel}$

Logiciel SIMNRA (SIMulation of Nuclear Reaction Analysis)

M. Mayer, Improved Physics in SIMNRA 7, Nucl. Instr. Meth. B 332 (2014) 176

Principales composantes intégrées dans ce logiciel

- Paramètres expérimentaux
- Pouvoirs d'arrêt, straggling en énergie
- Calculs de cinématique
- Sections efficaces Rutherford et expérimentales
- Double et multiple diffusion
- Rugosité

Méthode

- \triangleright Découpage de l'échantillon en sous-couches, L₁ à L_n en respectant la résolution en profondeur
- \blacktriangleright Superposition des contributions de chaque couche L_i
- Extraction de profils multi élémentaires en profondeur

Epaisseur de la couche Concentration atomique de A, B..

Mode de détermination de la résolution en profondeur

Simulation du spectre RBS de la couche Ti_mY_n

➢ Résolution en profondeur = 200.10¹⁵ at/cm² (eq. 40 nm)
 ➢ Stœchiométrie de volume ⇒ Ti (67,5%) et Y (30,5%) = 98 %

Complémentarité techniques IBA ⇒ RBS pour les éléments lourds ⇒ NRA pour les éléments légers

Spectre NRA de la couche Ti_mY_n

- Présence de C de contamination atmosphérique (éq. 2 nm)
- Présence d'un gradient de O

Couche mince Ti_mY_n sur substrat Si

Simulation du spectre RBS de la couche Ti_mY_n

Résolution en profondeur = 200.10^{15} at/cm² (eq. 40 nm) Steechiométrie de volume \Rightarrow Ti (67,5%) et Y (30,5%) = 98 %

Complémentarité techniques IBA \Rightarrow RBS pour les éléments lourds

⇒ NRA pour les éléments légers

Spectre NRA de la couche Ti_mY_n

- Présence de C de contamination atmosphérique (éq. 2 nm)
- Présence d'un gradient de O

Profils en profondeur

Couche mince Ti_mY_n sur substrat Si

PIGE et contraste chimique

 Complémentarité PIXE et PIGE Identification du pigment bleu Lapis-lazuli Composé de lazurite (3Na₂O.3Al₂O₃.6SiO₂.2Na₂S)

 μ -PIGE = Imagerie à l'echelle du micron

• Forces nucléaires et fonction d'excitation avec résonances

Mesure de profil en profondeur

Effet de matrice faible

Probabilité d'interférence faible (Gamma de haute énergie) Résolution en profondeur dépendante de la largeur de la résonance Expériences relativement longue car changement d'énergie

M. Chiari Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications, 21 - 25 October 2013, Trieste (Italy)

PIGE et interface verre borosilicate / eau

• Désalcalinisation Na à l'interface

Plusieurs réactions nucléaires

Réactions nucléaires résonantes

Elément	Na	Al
Réaction nucléaire résonante	²³ Na(p,αγ) ²⁰ Ne	²⁷ Al(p,γ) ²⁸ Si
Energie de résonance E _R (keV)	1012	992
Energie du rayon γ (MeV)	1634	1778
Largeur de la résonance (keV)	3	0,1
Section efficace à E _R (mb)	45	900
Epaisseur analysée (µm)	1,3	0,4
Résolution en profondeur (µm)	0,04	0,02
Sensibilité (% masse)	0,2	0,4

P. Trocellier et al., Nuclear Instruments and Methods 197 (1982) 15-25

Résultats après lixivation (Eau déionisée à 20°C)

Effet de charge de l'échantillon !!!

Diffusion élémentaire à l'échelle submicrométrique via les techniques nucléaires (IBA)

- Fondamentaux des techniques IBA (Ion Beam Analysis)
- Mise en œuvre des techniques nucléaires et Paramètres expérimentaux
- Analyse qualitative d'un spectre de particules nucléaires
- Analyse quantitative d'un spectre de particules nucléaires
- Caractéristiques d'un spectre de particules nucléaires et simulation d'un spectre
- **Exemple d'application : Mobilité de l'hélium au sein du verre nucléaire inactif SON68**

Mobilité de l'hélium au sein du verre nucléaire inactif SON68

T. Sauvage¹, R. Bès¹, F. Chamssedine¹, T. Fares², S. Peuget², J. Haussy³

¹ CEMHTI/CNRS, Orléans ² CEA/ DEN/VRH/DTCD/SECM/LMPA, Marcoule ³ CEA/DIF/DCRE/SEIM, Bruyère le Châtel

>Contexte de l'étude de la mobilité de hélium dans verres nucléaires

Enjeux industriels Objectifs de l'étude

Etudes préliminaires et protocole expérimental

Descriptif du dispositif expérimental DIADDHEM Méthodologie pour la mesure du profil He en profondeur

> Résultats : Mécanismes et données fondamentales

Premières observations Description des mécanismes de mobilité Modèle de diffusion et extraction de données fondamentales

Diffusion Hélium dans verres nucléaires

***** Vitrification des produits de fission (PF) et des actinides mineurs (AM)

Verre R7T7 (produit par ORANO - La Hague) Sélectionné pour confiner des radioéléments issus du combustible usagé

Verre borosilicate de sodium : structure capable d'incorporer une large gamme d'éléments chimique et de façon homogène (18% masse)

Désintégrations alpha des actinides

Production:

≻Hélium (~5MeV)

≻Noyau de recul (~0,1MeV)

***** Ordres de grandeur d'endommagement

1700 déplacements d'atomes par désintégration alpha90% dû aux noyaux de reculEndommagement de l'ordre de 0.5 à 1 dpa

✤ Génération de ⁴He

En faible quantité pendant fonctionnement du réacteur, en plus forte quantité pendant stockage A 10.000 ans de stockage quelques 0.01% at. He et de l'ordre de 0.5 à 1 dpa

Diffusion Hélium dans verres nucléaires

* Enjeux de l'industriel

- Prévoir l'évolution des colis de confinement lors de leur stockage à long terme
- Mécanismes de diffusion de He (Diffusion / Migration / Nucléation de bulles)
- Données fondamentales (D, V, K, Ea) pour une prédiction du comportement de He à long terme du matériau industriel
- Comportement du matériau industriel sous irradiation (Caractéristiques mécaniques et résistance à la fissuration, Gonflement et contraintes)

Scénario catastrophe

- → Fissuration du matériau = Augmentation de la surface d'échange
- → Rupture des barrières de confinement, jusqu'à la libération de PF et AM dans l'environnement
- \rightarrow Dissolution plus rapide du verre
- Augmentation en teneur d'actinides mineurs

Car, vers une augmentation du taux du combustion sans augmenter les volumes de stockage

Nécessité d'évaluer le comportement du verre à des doses de l'ordre de $10^{19} \alpha/g$

Etat de l'art

Concentration d'hélium

Température et temps

Température d'implantation ou d'irradiation

Endommagement

* Mode d'introduction de l'hélium

Dans la littérature: Effets des désintégrations alpha étudiés jusqu'à une dose intégrée de $5.10^{18} \alpha/g$ (~ 5000 ans de stockage)

Par la technique de dopage des actinides	MX chauds, Analyse de volume,
Par la réaction nucléaire ¹⁰ B(n,α) ⁷ Li	représentativité
Par la technique d'implantation	Analyse de surface, étude paramétrique, Résolution en profondeur
Par infusion	Valeurs intrinsèques
Paramètres d'étude	
latériaux	

* Effets de l'endommagement

Persistance d'une légère dépolymérisation

Degré de polymérisation d'origine Degré de polymérisation supérieur (cas rares)

 \blacktriangleright Modifications structurales: BO₄ en BO₃, ruptures de liaisons Si-O, taille moyenne des anneaux...

Evolution des propriétés macroscopiques

→ Stabilisées après 2.10¹⁸ a.g⁻¹ soit 0,08 dpa
✓ Gonflement (<0,6%) [1-3]
✓ Micro-dureté Vickers (réduite de 30%) [1-3]
✓ Module d'élasticité (réduit de 30%) [4,5]

➢ Formation de nanobulles He ??

[1] Hj. Matzke *et al.,J. Nucl. Mater.* 201 (1993) 295.
[2] W.J. Weber *et al., J. Mater. Res.* 12 (1997) 1946.
[4] Y. Inagaki *et al., Mater. Res. Soc. Symp. Proc.* 294 (1993) 191.
[5] Hj. Matzke, CEA/Valrhô Summer Session Proceedings on Glass: Scientific Research for High Performance Containment, Méjannes-Le-Clap, 1997, p. 149.
[6] Thèse de Toby Fares, *« Comportement de l'hélium dans le verre nucléaire type R7T7 »*, Univ. Montp. II, 2011

[3] S. Peuget et al., J. Nucl. Mater. **354** (2006) 1–13

Objectif de l'étude

Compréhension des mécanismes de diffusion/migration de l'hélium dans le verre nucléaire

Matériau étudié Verre "simplifié " SON68
 29 oxydes

Concentrations atomiques des éléments majeurs									
Ο	Si	В	Na	Li	Al	Ca	Fe	Zn	
60.0	15.5	8.3	6.6	2.7	2.0	1.5	0.77	0.63	Etc

* Mode d'incorporation de He

Incorporation d'hélium par la technique d'implantation

[dpa]/[He] ≈ 60 pour 25 keV<E_{He}<5 MeV

Étude de l'endommagement

Augmentation de [dpa]/[He] par pré-irradiation en ions lourds

⇔ Coefficients de diffusion thermique et de E_a en fonction de la fluence d'implantation et de l'endommagement

Seprésentativité de la technique d'implantation ?

Mobilité de l'hélium au sein du verre nucléaire inactif SON68

Contexte de l'étude de la mobilité de hélium dans verres nucléaires

Enjeux industriels Objectifs de l'étude

> Etudes préliminaires et protocole expérimental

Descriptif du dispositif expérimental DIADDHEM Méthodologie pour la mesure du profil He en profondeur

> Résultats : Mécanismes et données fondamentales

Premières observations Description des mécanismes de mobilité Modèle de diffusion et extraction de données fondamentales

Etudes préliminaires

Simplantation He dans des disques de verre SON68 à température ambiante

Service par IBA de la désorption de He en f(t) de stockage à 25°C

20% après 20h de stockage à 25°C

50% après 60h de stockage à 25°C

Énergie	600 keV
Fluence (He.cm ⁻²)	5. 10 ¹⁵

0,3 % at He à 1,8 μm

Forte mobilité de l'hélium à température ambiante

Nécessité d'implanter l'hélium à basse température

Nécessité de suivre in situ l'hélium

Nécessité de développer un dispositif expérimental

Description technique de DIADDHEM

DIspositif d'Analyse de la Diffusion du Deutérium et de l'HElium dans les Matériaux

Technique IBA in situ en température sous vide secondaire

Tête goniométrique

- Goniomètre avec deux translations et deux rotations motorisées
- Porte-échantillon 1 pouce
- \triangleright Pinces rétractables de refroidissement LN₂ du porte-échantillo
- > Four à bombardement électronique ($T_{max} = 1400^{\circ}C$)

Mesure de température

- ➢ Un pyromètre avec plage de mesure [300°C, 1400°C] avec une visée à 15°
- \geq 2 thermocouples sur pinces
- ▶ Un blindage thermique 360° rétractable autour de la tête goniométrique

Détecteurs

➢ Un détecteur 1200 mm² à 0° (Transmission)

➢ Un détecteur annulaire 80 mm² à 178° (Rétrodiffusion / Emission)

➢ Un détecteur 1200 mm² à 150° (Rétrodiffusion /Emission)

Filament du four

Protocole expérimental

Mesure du profil He en profondeur par NRA coïncidence

³He(²H, ⁴He)¹H

Faisceau de ²H d'énergie T₁ et Emission de particules de ⁴He et ¹H sur 4π

 \Rightarrow Quelles sont les énergies des particules ⁴He et ¹H émises à 178° en fonction de T₁?

Pour $T_1 = 900$ keV et ³He en surface de l'échantillon

 $T(^{4}He) = 2 MeV \text{ et } T(^{1}H) = 13 MeV$

 \Rightarrow Quelle particule à détecter pour meilleure résolution du profil en profondeur?

Calcul de T'₃ en fonction de la profondeur x et tracé de $\frac{dT'_3}{dx}$

• Quelle particule à détecter pour une meilleure résolution du profil en profondeur ?

Calcul de T'₃ en fonction de la profondeur x et tracé de $\frac{dT'_3}{dx}$ Réponse: Particule ⁴He et ceci quelque soit l'énergie ²H

Quelle énergie faisceau pour l'analyse de ³He implanté à 600 keV ?
 900 keV ²H

Section efficace et profil ³He simulé dans le matériau SON68

- Mais problème d'interférence spectrale dans ROI ³He
- Mise en œuvre de la détection en coïncidence de ⁴He et ¹H
 Quand ⁴He est émis à 178°, ¹H est émis simultanément à 7°

[©] Pas de bruit de fond

 \odot Temps d'analyse 40 minutes pour 2.10¹⁶ ³He/cm² (1% at.)

Quelle resolution en profondeur ?

10¹⁵ particules incidentes
10⁸ particules détectées
2.10³ particules α détectées

Méthode pour extraire un profil en profondeur

- Découpage de l'échantillon en sous-couches, L₁ à L_n respectant la résolution en profondeur
- Fit du spectre expérimental avec comme paramètre les concentration ³He C_{i,3He} de chaque couche L_i
- Extraction du profil ³He en profondeur

Echantillon non recuit

Résolution en profondeur 50 nm à la surface 120 nm à 1,8 µm

Très bonne reproductibilité de mesure

Précise car fluence mesurée = $(1,96 \pm 0,08)$. 10^{15} ³He/cm² à comparer avec la fluence d'implantation de 2. 10^{15} ³He/cm² Sensibilité de détection ≈ 50 ppm at. Bon accord avec simulation SRIM

Mobilité de l'hélium au sein du verre nucléaire inactif SON68

Contexte de l'étude de la mobilité de hélium dans verres nucléaires

Enjeux industriels Objectifs de l'étude

> Etudes préliminaires et protocole expérimental

Descriptif du dispositif expérimental DIADDHEM Méthodologie pour la mesure du profil He en profondeur

> Résultats : Mécanismes et données fondamentales

Premières observations Description des mécanismes de mobilité Modèle de diffusion et extraction de données fondamentales

MECANISMES DE DIFFFUSION DE HELIUM DANS SON68

Elargissement du profil 🖒 Diffusion

> Pic He « persistant » au centre

H diffuse rapidement dans le verre SON68, dès -20°C Diffusion thermiquement activée (30 min à 0 et 25°C) Diffusion anisotrope avec éventuel phénomène de transport

Asymétrie importante

Complexité des mécanismes mis en jeu

MECANISMES DE DIFFFUSION DE HELIUM DANS SON68

Notre démarche pour une compréhension des mécanismes

1. Diffusion

Zone au-delà du pic d'implantation = diffusion dans un verre sain Zone vers surface = Matériau faiblement endommagé (0 à 0,02 dpa) pour 2.10^{15 3}He/cm²

2. Fraction piégée

Présence de He_N voire nanobulles ? Remise en solution de He_N et nanobulles ?

⇒ Implantation He et MET in situ

3. Asymétrie du profil Transport vers la surface (V<0) ?

⇒ Jouer sur la fluence d'implantation

0,07 dpa pour 2.10¹⁵ 3 He/cm²

0,7 dpa pour 2.10^{16} ³He/cm²

Mais [dpa]/[He] au pic d'implantation = constante ≈ 60 pour 25 keV<E_{He}<5 MeV

⇒ Pré-endommagement MX par ²⁸Si

Irradiation multi énergie \Rightarrow 1 dpa homogène sur 3 µm [dpa]/[He] au pic d'implantation = 1000 pour 2.10¹⁵ ³He/cm² = 150 pour 2.10¹⁶ ³He/cm²

Expériences MET in situ Jannus/Orsay

Lame mince SON68 100 nm à -130°C 10 keV ${}^{4}\text{He}^{+}$ / 65° / 1,15.10¹⁵ ${}^{4}\text{He/cm}^{2}$ \Rightarrow 0,12 % at. / (0,07 ± 0,05) dpa Recuit Observation MET à -180°C \Rightarrow [dpa] / [He] \approx 60

25° Echantillon SRIM-08 calculation ^⁴He 10 keV, 65° 0.16 0.16 ----- Concentration ---- Damages 0.14 0 14 concentration (at. %) 0.12 0.12 (dpa) 0.10 0.10 Damages 0.08 0.08 0.06 0.06 0.04 0.04 ⁴He 0.02 0.02 0.00 0.00 20 60 80 40 100 Depth (nm)

Faisceau d'électron

-20°C/15 minutes

- Présence de nanobulles (2-3 nm) dès -130°C
- Disparition de nanobulles lors du recuit

 \bullet

- Des nanobulles toujours présentes après 20°C/2h
 - Mêmes observations pour Verre implanté à 3,3.10¹⁵ ⁴He/cm² Verre pré-endommagé par ions ²⁸Si

Présence avérée de nanobulles avec piégeage de He et supposée de clusters He_n avec mobilités différentes selon taille

Faisceau de ⁴He

Source du Pic He persistant au centre Ou Fraction "piégée"

Paramètre Endommagement du matériau

• Influence de la fluence d'implantation

 \Rightarrow 0,07 et 0,7 dpa au pic d'implantation avec [dpa]/[He] = 60

Mobilité He légèrement affectée (> pour 2.10¹⁶ ⁴He/cm²) Fraction "piégée" plus faible à 25°C/90 min pour 2.10¹⁶ ⁴He/cm²

• Pré-endommagement ions lourds ²⁸Si

1 dpa sur 3 μ m [dpa]/[He] = 1000 pour 2.10^{15 3}He/cm² [dpa]/[He] = 150 pour 2.10^{16 3}He/cm²

Endommagement homogène inhibe l'asymétrie (Valable pour les deux fluences ³He)

Asymétrie due à inhomogénéité de l'endommagement d'où force de transport

Observations phénoménologiques = Guide pour poser un modèle

- Pour simulation numérique des profils de concentration
- Pour extraction de données fondamentales D, V et E_a

1000 1250 1500 1750 2000 2250 2500 2750 Depth (nm)

750

Modèle et extraction de données fondamentales

Cas général

Diffusion/transport de He à He_N Hypothèse D et V homogènes en fonction de x R_i : Terme de création et de destruction de clusters He_i

• Modèle

Réduction à deux populations

$$\begin{cases} C^{(1)}(x,t) = \sum_{i=1}^{n} C_{i}(x,t) ,\\ C^{(2)}(x,t) = \sum_{i=n+1}^{N} C_{i}(x,t) ,\\ \\ D^{(1)}_{app}(t) = \sum_{i=1}^{n} D_{i} \frac{\partial^{2} C_{i}(x,t)}{\partial x^{2}} ,\\ D^{(2)}_{app}(t) = \sum_{i=n+1}^{N} D_{i} \frac{\partial^{2} C_{i}(x,t)}{\partial x^{2}} \simeq 0 ,\\ \\ V^{(1)}_{app}(t) = \sum_{i=1}^{n} D_{i} \frac{\partial C_{i}(x,t)}{\partial x} ,\\ \\ V^{(2)}_{app}(t) = \sum_{i=n+1}^{N} D_{i} \frac{\partial C_{i}(x,t)}{\partial x} \simeq 0 , \end{cases}$$

Population 1 mobile de $He_1 a He_n$ Population 2 piégée de $He_{n+1} a He_N$

Avec

$$C(x,t) = \sum_{i=1}^{N} C_i(x,t) .$$

$$\begin{cases} \frac{\partial C_1(x,t)}{\partial t} = D_1 \frac{\partial^2 C_1(x,t)}{\partial x^2} + V_1 \frac{\partial C_1(x,t)}{\partial x} + R_1(x,t) , \\ \vdots \\ \frac{\partial C_i(x,t)}{\partial t} = D_i \frac{\partial^2 C_i(x,t)}{\partial x^2} + V_i \frac{\partial C_i(x,t)}{\partial x} + R_i(x,t) , \\ \vdots \\ \frac{\partial C_N(x,t)}{\partial t} = D_N \frac{\partial^2 C_N(x,t)}{\partial x^2} + V_N \frac{\partial C_N(x,t)}{\partial x} + R_N(x,t) \end{cases}$$

$$\begin{split} &C(x,t) = C^{(1)}(x,t) + C^{(2)}(x,t) \ ,\\ &\frac{\partial C^{(1)}(x,t)}{\partial t} = D^{(1)}_{app}(t) \frac{\partial^2 C^{(1)}(x,t)}{\partial x^2} + V^{(1)}_{app}(t) \frac{\partial C^{(1)}(x,t)}{\partial x} + R_{(1) \rightleftharpoons (2)} \\ &\frac{\partial C^{(2)}(x,t)}{\partial t} = -R_{(1) \rightleftharpoons (2)} \end{split}$$

$$\begin{aligned} R_{(1)\rightleftharpoons(2)}(t) &= \sum_{j=1}^{n} k_{i\rightleftharpoons j}(x,t) C_{j}(x,t) = R_{(1)\rightleftharpoons(2)} \\ R_{(2)\rightleftharpoons(1)}(t) &= \sum_{j=n+1}^{N} k_{i\rightleftharpoons j}(x,t) C_{j}(x,t) = R_{(2)\rightleftharpoons(1)} \\ R_{(1)\rightleftharpoons(2)}(t) &= -R_{(2)\rightleftharpoons(1)}(t) \;. \end{aligned}$$

Hypothèse Echange entre populations homogène en fonction de la profondeur

Modèle et extraction de données fondamentales

$$\begin{split} C(x,t) &= C^{(1)}(x,t) + C^{(2)}(x,t) ,\\ \frac{\partial C^{(1)}(x,t)}{\partial t} &= D^{(1)}_{app}(t) \frac{\partial^2 C^{(1)}(x,t)}{\partial x^2} + V^{(1)}_{app}(t) \frac{\partial C^{(1)}(x,t)}{\partial x} + R_{(1) \rightleftharpoons (2)} \\ \frac{\partial C^{(2)}(x,t)}{\partial t} &= -R_{(1) \rightleftharpoons (2)} \end{split}$$

Densité de He_N grande quand la concentration [He] est grande donc

$$C^{(2)}(x,0) = \lambda(0)C(x,0)$$

Attention !!! $R_{(1) \leftrightarrows (2)}$ et λ sont corrélés

$$\lambda(t) = \lambda(0) \exp(-R_{(1) \rightleftharpoons (2)} t)$$

Résultat de simulation $\lambda(0) = (21 \pm 1) \%$

Deux démarches

• Fixer $\lambda(0)$ et déterminer $R_{(1)=(2)}$

• $R_{(1) \leftrightarrows (2)} = 0$ et déterminer $\lambda(t)$ $C^{(2)}(x, t) = \lambda(t)C(x, 0)$ $\lambda(t)$: Fraction "piégée"

Extraction de $D_{app}^{(1)}(t)$, $V_{app}^{(1)}(t)$ et $\lambda(t)$ en fonction de T

$$\begin{split} C(x,t) &= C^{(1)}(x,t) + C^{(2)}(x,t) , \quad C^{(2)}(x,t) = \lambda(t) C(x,0) \\ \frac{\partial C^{(1)}(x,t)}{\partial t} &= D^{(1)}_{app}(t) \frac{\partial^2 C^{(1)}(x,t)}{\partial x^2} + V^{(1)}_{app}(t) \frac{\partial C^{(1)}(x,t)}{\partial x} \\ \frac{\partial C^{(2)}(x,t)}{\partial t} &= 0 \end{split}$$

Modèle et extraction de données fondamentales

Simulation des profils expérimentaux avec le Code AGEING Méthode des lignes ("Method Of Lines") pour résoudre numériquement les équations aux dérivées partielles du modèle Méthode des moindres carrés non linéaire pour minimiser la fonction erreur Calcul d'erreur des valeurs D, V, λ et $R_{(1) \leftrightarrows (2)}$

Simulation de profils ³He pour 2.10¹⁵ ³He/cm² non pré-endommagé

Extraction de données fondamentales pour 2.10^{15 3}He/cm² non pré-endommagé

$\lambda(t)$ à comparer à $\lambda(0) = (21 \pm 1)\%$ Température Durée de Fraction recuit (min) "piégée" (%) de recuit -20°C 1440 21 ± 12 $0^{\circ}C$ 10 ± 7 300 $0^{\circ}C$ 960 15 ± 4 $15^{\circ}C$ 120 19 ± 5 $15^{\circ}C$ 240 20 ± 4 $15^{\circ}C$ 16 ± 3 480 $25^{\circ}C$ 30 23 ± 5 $25^{\circ}C$ 90 20 ± 4 $25^{\circ}C$ 220 19 ± 4 $50^{\circ}C$ 30 15 ± 3

-20°C $(10^{-15} m^2)$ 360 0°C 15°C 320 25°C 280 50°C range 240 200 mean 160 ³He diffusion 120 80 40 imit of detection 200 400 600 800 1400 1000 1200 1600 Annealing duration (min)

Tracé de $L_{Diff}^2 = 2.D.t$

Mobilité $[He_n \ a \ He_N] < LD$ Faible remise en solution de $[He_n \ a \ He_N]$

60

 10 ± 3

 $50^{\circ}C$

D(T) indépendant du temps Diffusion thermiquement activée

V(T) indépendant du temps Transport thermiquement activée

Système majoritairement diffusionnel

Transport = Relaxation du matériau implanté ?

Extraction de données fondamentales pour 2.10¹⁵ ³He/cm² non pré-endommagé

 $(10^{-15} m^2)$

range

³He diffusion mean

360

320

280

240

200

160

120

80

40

$\lambda(t)$ à comparer à $\lambda(0) = (21 \pm 1)\%$

Tracé de $L_{Diff}^2 = 2.D.t$

-20°C

0°C

15°C

25°C

50°C

1400

1200

Température	Durée de	Fraction
de recuit	recuit (min)	"piégée" (%)
$-20^{\circ}\mathrm{C}$	1440	21 ± 12
$0^{\circ}C$	300	$10{\pm}7$
$0^{\circ}C$	960	15 ± 4
$15^{\circ}\mathrm{C}$	120	19 ± 5
$15^{\circ}C$	240	$20{\pm}4$
$15^{\circ}\mathrm{C}$	480	16 ± 3
$25^{\circ}C$	30	23 ± 5
$25^{\circ}\mathrm{C}$	90	20 ± 4
$25^{\circ}\mathrm{C}$	220	19±4
$50^{\circ}C$	30	15 ± 3
$50^{\circ}C$	60	10 ± 3

Mobilité [$He_n a He_N$] < LD Faible remise en solution de [He_n à He_N]

600

800

Annealing duration (min)

mit of detection

1000

200

400

Sample annealed at : Sample annealed at : -20°C 200 Ê О°С (10⁻⁹ I 180 15°C 25°C 160 50°C He transport mean range 140 120 100 80 60 imit of detectior. 200 400 600 800 1000 1200 1400 1600 1600 Annealing duration (min)

> V(T) indépendant du temps Transport thermiquement activée

Système majoritairement diffusionnel

Transport = Relaxation du matériau implanté ?

Evolution de $\lambda(t)$ en fonction des conditions d'implantation

2.10^{15 3}He/cm² (0,07 dpa)

Température	Durée de	Fraction
de recuit	recuit (min)	"piégée" (%)
-20°C	1440	21±12
0°C	300	$10{\pm}7$
$0^{\circ}\mathrm{C}$	960	15 ± 4
15°C	120	19 ± 5
$15^{\circ}C$	240	20 ± 4
$15^{\circ}C$	480	16 ± 3
$25^{\circ}C$	30	23 ± 5
$25^{\circ}\mathrm{C}$	90	$20{\pm}4$
$25^{\circ}C$	220	19 ± 4
$50^{\circ}C$	30	15 ± 3
$50^{\circ}C$	60	10 ± 3

Mobilité $[He_n \ a \ He_N] < LD$ Faible remise en solution de He_n

2.10¹⁶ ³He/cm² (0,7 dpa)

Température	Durée de	Fraction
de recuit	recuit (\min)	"piégée" (%)
-20°C	300	23 ± 14
$0^{\circ}\mathrm{C}$	30	18 ± 8
$0^{\circ}C$	90	13 ± 5
$0^{\circ}\mathrm{C}$	270	5±4
$25^{\circ}\mathrm{C}$	30	$10{\pm}4$
$25^{\circ}C$	90	8±3
$50^{\circ}C$	60	3 ± 3

2.10^{15 3}He/cm² pré-endommagé Si (1 dpa)

Température	Durée de	Fraction
de recuit	recuit (min)	"piégée" (%)
-20°C	1440	16±9
0°C	300	$10{\pm}7$
$15^{\circ}C$	120	3±3
$15^{\circ}C$	240	$9{\pm}5$
$15^{\circ}C$	480	4±4
$25^{\circ}C$	90	6 ± 5
$25^{\circ}C$	240	5 ± 4
$50^{\circ}C$	60	4±3

Mobilité $[He_n \ a \ He_N] > LD$

Taille des clusters $[He_n a He_N]$ plus faible pour matériau endommagé Mobilité de $[He_n a He_N]$ accrue pour matériau endommagé

OU

Remise en solution de $[He_n \ a He_N]$, plus efficace pour MX endommagé

Evolution de D(T) et V(T) en fonction des conditions d'implantation

• Vitesse de transport plus faible pour matériau pré-endommagé 1 dpa A fort dpa, modifications structurales induites par irradiation (Evolution des propriétés mécaniques, gonflement..)

Mais sans gradient d'endommagement = Relaxation faible et isotrope

• Vitesse de transport semble plus grande pour 2.10¹⁶ ³He/cm² (0,7 dpa) Formation de clusters plus nombreux et gros d'où augmentation contraintes

mécaniques dues à leur coalescence ?

- \Rightarrow NON car $\frac{d\lambda}{dt}$ plus grand et $\lambda(0)$ identique
- \Rightarrow OUI si remise en solution de [He_n à He_N] favorisée dans matériau endommagé

Diffusion plus faible pour matériau pré-endommagé 1 dpa Mêmes observations entre expériences d'infusion et expériences de dopage ²⁴⁴Cm

Diffusion semble plus forte pour 2.10¹⁶ ³He/cm² (0,7 dpa)

Contradiction mais système complexe

Matériau inhomogène de par gradient d'endommagement + relaxation du matériau + formation/remise en solution de $[He_n a He_N]$

Force de transport = Relaxation de contraintes locales (Nanobulles et/ou gradient d'endommagement)

Evolution de E_a en fonction des conditions d'implantation ET Pertinence des techniques IBA

- Bonne cohérence avec la littérature
- Pertinence de la technique NRA en coïncidence
- Représentativité de la technique d'implantation pour une incorporation accélérée
- Dopage 5 ans pour obtenir 0,01% de He

Gamme de temperature (°C)	Energie d'activation (eV)	Conditions expérimentales	Endommagement $(10^{19}\alpha/g)$	Référence
-	(0,61 ± 0,04)	Infusion	0	[5]
-20 à 50°C	(0,63 ± 0,02)	Implantation ³ He à -130°C	0 à 0,16	Ce travail
300 à 450°C	0,65	Dopage ²⁴⁴ Cm	0,06	[1]
-20 à 50°C	(0,55 ± 0,02)	Implantation ³ He à -130°C	2,3	Ce travail
220 à 420°C	0,55	Dopage ²⁴⁴ Cm	1	[2]
250 à 420°C	0,61	Dopage ²⁴⁴ Cm	1	[3]
-20 à 50°C	(0,47 ± 0,02)	Implantation ³ He à -130°C	0 à 1,6	Ce travail
130 à 730°C	0,47 à 1,15	Reaction 10 B(n, α) ⁷ Li	0 à 0,39	[4]

[1] R.P. Turcotte, Technical Report BNWL-2051, 1976

[2] Y. Inagaki, H. Furuya, K. Idemitsu, T. Banba, S. Matsumoto, S. Murakoa,

Materials Research Society Symposium Proceedings 257 (1992) 199

[3] T. Fares, S. Peuget, O. Bouty, X. Deschanels, M. Magnin, C. Jégou, Journal of Nuclear Materials 416 (2011) 236

[4] G. Malow and H. Andresen, in: G.J. McCarthy (Ed.), Scientific Basis for Nuclear [5] T. Fares, thesis Montpellier II Univ, CEA, DEN-DTCD (France), 2011

RESEAU NATIONAL DES ACCELERATEURS EMIR&A

Fédération d'infrastructures mettant à disposition de la communauté scientifique un ensemble d'accélérateurs avancés et d'instruments in situ, dédiés à l'irradiation et à l'analyse de molécules et de matériaux par techniques IBA

AAP 18/10/2021

INVITATION

Pour perfectionnement aux techniques IBA Rencontres IBAF "Ion Beam Applications Francophone"

http://www.ibaf.fr/