Caractérisation de la séparation de phase et de la cristallisation à petite échelle

Wilfried Blanc

Université Côte d'Azur, CNRS, InPhyNi, Nice, France

Fiber lasers and amplifiers

Er³⁺ fluorescence

« Spectroscopic properties of rare earths in optical materials », Liu & Jacquier (2005)

Nanostructured optical fibers

Luminescent ions in the nanoparticles

1904 OPTICS LETTERS / Vol. 23, No. 24 / December 15, 1998

Are low-loss glass-ceramic optical waveguides possible?

P. A. Tick

Corning Incorporated, SP-AR-O2-1, Corning, New York 14831-0001

Received September 24, 1998

The results of a cutback measurement of a glass-ceramic optical waveguide with single-mode fiber geometry have demonstrated that sub decibels per kilometer losses can be achieved. Difference spectra show that the limit of intrinsic scattering in these two-phase structures ought to be tens of decibels per kilometer. © 1998 Optical Society of America

Rayleigh scattering

$$Rayleigh \, losses \propto [NP] \times L \times \frac{d^{6}}{\lambda^{4}} \times n_{m}^{2} \left(\frac{n_{n}^{2} - n_{m}^{2}}{n_{n}^{2} + 2n_{m}^{2}} \right)^{2}$$

Rayleigh scattering

$$Rayleigh losses \propto [NP] \times L \times \frac{d^6}{\lambda^4} \times n_m^2 \left(\frac{n_n^2 - n_m^2}{n_n^2 + 2n_m^2} \right)^2$$

Four requirements:

i) the particle size must be less than ~15 nm
ii) the distance between particles must be
comparable to the particle size
iii) the size distribution must be narrow
iv) the particles must not cluster together
And lower refractive index difference

P. Tick, Opt. Lett. (1998)

Nanoparticles-doped fibers used as sensors

Strain \rightarrow 3D-shape

Temperature

Daniele Tosi, Carlo Molardi

Opt. Lett. (2018), BioMed. Opt. Express (2019), Opt. Express (2019), J. Lightwave Technol. (2019)

- Preparation of nanoparticles-doped fibers
- LaF₃:Tm³⁺ doped fiber
- Mg²⁺ and Er³⁺ doped fiber

MCVD – solution doping step

M. Vermillac et al., Opt. Mat. (2017)

Collapsing stage

Drawing stage

Nanoparticles in optical fiber

X-ray nanotomography

Daniel Borschneck

M. Vermillac et al., Opt. Mat. (2018)

FIB/SEM tomography of fiber core

centre Pluridisciplinaire de Microscopie électronique et de Microanalyse

Martiane Cabie

M. Vermillac et al., J. Am. Ceram. Soc. (2017)

Deformation of a drop under shear flow

J. Li & Y. Renardy, SIAM Rev. (2000)

Deformation of a drop under shear flow

 $Ca > Ca_C \longrightarrow$ Breakup of the drop

J. Li & Y. Renardy, SIAM Rev. (2000)

Nanoparticles in optical fiber

Thermal treatments

Evaporation of F

 $[La]_{measured} = 1 \text{ at.} \% \rightarrow [F]_{expected} = 3 \text{ at.} \%$

 $LaF_3 \rightarrow La_2Si_2O_7$

P. R. Diamente et al., Adv. Funct. Mater. (2007)

Zeiss NanoFab – Secondary Ion Mass Spectrometer (SIMS)

Chemical composition: Spatial resolution < 15 nm with a 20 keV Neon beam

Particles ejected:

- Electrons
- Positive and negative secondary ions (SIs)
- Small molecular fragments and clusters
- Neutral species

Chemical composition of nanoparticles

Chemical composition of nanoparticles

Er, Mg-doped optical fiber

• MgCl₂ + ErCl₃ (ethanol)

• Porous layer : $SiO_2 + P_2O_5 + GeO_2$

Alkaline earth ions phase separation

 $SiO_2 - MO (M=Mg, Ca, Sr)$ phase diagram

Nanoparticles in optical fiber

W. Blanc et al., J. Am. Ceram. Soc. (2011)

Er³⁺ fluorescence vs Mg concentration

F. D'Acapito et al., J. of Non-Cryst. Solids (2014)

Particles composition by nanosims 50

- Spatial resolution: 60 nm
- Exact composition unknown

W. Blanc et al., Optical Materials Express (2012)

Atom Probe Tomography (APT)

Atom Probe Tomography

Transverse profile of nanoparticles

- Enrichment for P and Mg
- Clear uptake in Er

W. Blanc et al., J. Phys. Chem. C (accepted)

Composition vs Radius

W. Blanc et al., J. Phys. Chem. C (accepted)

Molecular dynamics simulations

0.89SiO₂-0.10MgO-0.01ErO_{3/2}

Stéphane Chaussedent

W. Blanc et al., J. Phys. Chem. C (accepted)

NP volume	Er ³⁺ coordination:			
V (nm ³)	Ο	Si	Mg	Er
0.1 <v<0.5< td=""><td>6.3</td><td>6.9</td><td>1.9</td><td>0.2</td></v<0.5<>	6.3	6.9	1.9	0.2
0.5 <v<7< td=""><td>6.6</td><td>6.7</td><td>3.3</td><td>0.3</td></v<7<>	6.6	6.7	3.3	0.3
7 <v<28< td=""><td>6.7</td><td>6.5</td><td>4.2</td><td>0.5</td></v<28<>	6.7	6.5	4.2	0.5
	First shell	Second shell		

W. Blanc et al., J. Phys. Chem. C (accepted)

Er³⁺ fluorescence vs Mg concentration

F. D'Acapito et al., J. of Non-Cryst. Solids (2014)

Classical Nucleation Theory (CNT) vs. Spinodal decomposition

Composition vs Radius

Conclusion

- Nanoparticles method allows to taylor RE luminescent properties
- APT and NanoSIMS allow to measure composition at nm-scale
- Nanoparticles composition depends on their sizes
 - → Luminescence refractive index vs. size ?
 - \rightarrow Growth path: from amorphous to crystal

