Glass characterization

Peggy Georges

Ecole Verre & Optique USTV, 05-10/10/25 CORNING

Corning Overview

Information security

This presentation contains Corning information and is intended solely for those with a need to know. It may not be distributed, in whole or part, in any form by any means, or by any person or organization without authorization from Corning Incorporated.

At a glance

>54,000

75+ manufacturing sites R&D facilities

employees across 40+ countries

Excluding Hemlock Semiconductor employees

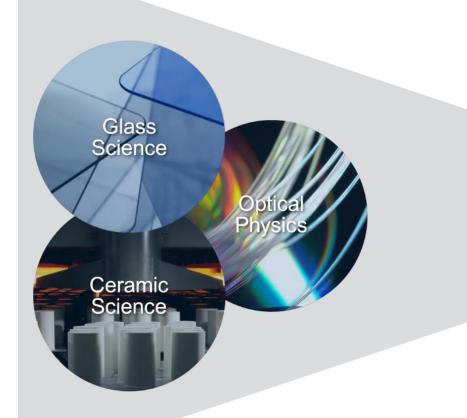
Fortune 500 Ranking:

263

Core Sales 2024:

\$14.47 billion

Unwavering investment in RD&E


Invest about 7-8% of annual sales

~\$1 billion each year

Best-in-the-World Capabilities

3 Core Technologies

Manufacturing & Engineering Platforms

Focus >80% of resources on opportunities that leverage capabilities from at least two of three columns

Corning European Technology Center

Competencies

Materials

20 FTE

- Inorganic
- Organic

Process

50 FTE

- Melting, Forming
- Post-processing
- Equipment design
- Meas & Controls

Product

9 FTE

- Chemical Eng.
- Heat Management
- Reliability

Characterization

24 FTE

- Chemical
- Physical
- Mechanical
- Metrology

Opt. Comm.

MCE

Display

Automotive

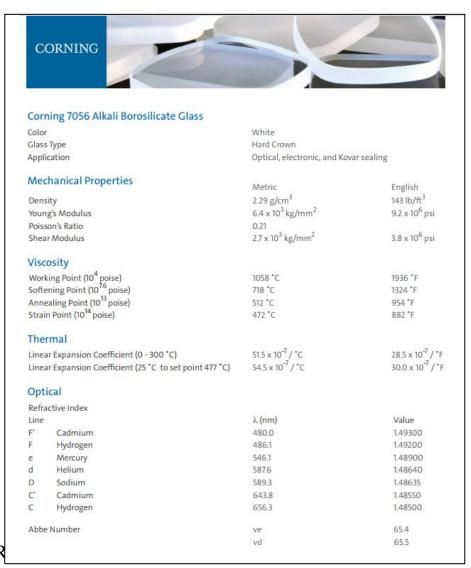
Life Science

EIG, EK & Oth.

Sustainability

Futures

CETC Strategic Vision 2035


- Deliver impactful technology innovations (RDE) leveraging our core competencies, capabilities, and strong relationship with Corning businesses and technology community
- Lead key technology innovations for a sustainable world
- Serve Corning as a Technology Hub for **European** manufacturing sites, suppliers and customers
- Be the meaningful and exciting place to work that the best talents want to join and stay

HR, Admin & Operations - 12 FTE

Portfolios

Glass properties Characterisation

Glass properties Example of a data sheet

Electrical

Log₁₀ Volume Resistivity at 250 °C 10.3 ohm-cm Log₁₀ Volume Resistivity at 350 °C 8.4 ohm-cm 5.7 Dielectric Constant at 20 °C, 1 MHz Loss Tangent at 20 °C, 1 MHz 0.27%

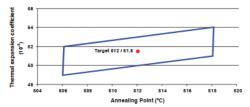
Transmission

380 - 780 nm Luminous Transmission Factor (10 mm thickness) 91% Color- Minimum R Value (T400/T650) 5.5 mm thickness

Maximum 1.5% / cm Light Absorption or Beta Value

> Beta Value = $((1-r)^2 - T) / ((1-r)^2 + t)$ r: ((nd - 1) / (nd + 1))2 t: length of the sample in cm T: Average transmission at 450, 507.7, 529.8, 543.7, 550, 555.4,

> 566.3, 576.9, 587.9, 600.1, 615.2, 639.7, 650 nm


Coating and Tempering

Vacuum Coating YES N/A Chemical Tempering Air Tempering N/A

Chemical Durability (class)

To Water: NF ISO 719 N/A N/A To Acid: DIN 12-116 To Alkalis; ISO 695 N/A

7056 Glass Strips Specification Annealing Point and Thermal Expansion Coefficient

CORNING

Corning SAS - Specialty Glass

Rue St Laurent - CS 10243 Bagneaux sur Loing 77797 Nemours Cedex - FRANCE

©2017 Corning Incorporated. All rights reserved. Corning is a registered trademark of Corning Incorporated. 030617_rev b

Glass properties

Huge range of composition and related properties

Mechanical

Density, Young modulus, Poisson's ratio, shear modulus...

Thermal & Rheological Properties

- Thermophysical (CTE, glass viscosity, thermal diffusivity/conductivity...)
- TGA / DSC / Cp

Optical

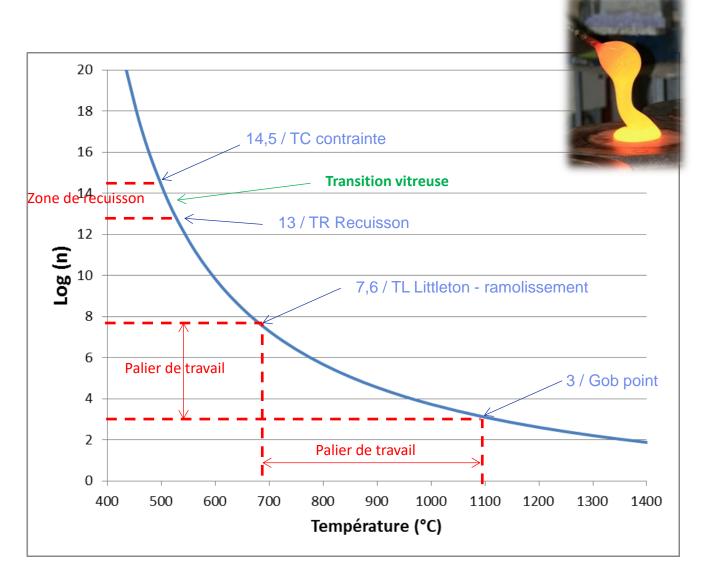
Refractive Index, Abbe number, transmittance, color, shadow-scopy, haze determination, bubbles & defects count

Electrical properties

Resistivity, Dielectric constant, Loss tangent

Metrology

Dimension, surface roughness

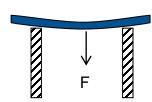

Chemical properties

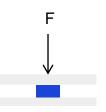
Composition, Durability

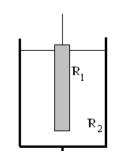
Defects characterization

SEM, Raman, µXRF, µXRD...

Thermophysical Properties




Fiber elongation


BBV
Beam Bending
Viscosimeter (10¹²-10¹⁰)

PPV
Parallel Plate Viscosimeter
(109-106)

HTV- Rheometer with coaxial cylinders (10⁵-)

Thermophysical Properties

Density

GasPycnometer

Linear Expansion Coefficient

- 0-300°C
- 25°C to set point


$$\alpha = \frac{1}{L} \times \frac{\Delta L}{\Delta T}$$

Thermal Conductivity / ability to conduct heat

Rate at which heat energy is transferred through the material when there is a temperature gradient

Heat pulse or Laser flash methods => diffusivity $\alpha(T)$

$$DSC \Rightarrow c_p$$

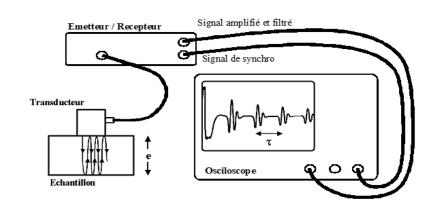
Sodalime 9.10⁻⁶ °C⁻¹ Fused silica 0,5 .10⁻⁶ °C⁻¹ ULE 0 ± 0,03.10⁻⁶ °C⁻¹

$$\lambda(T) = \rho(T).c_p(T).\alpha(T)$$

Physical Properties

Mechanical Properties Young Modulus (E), Poisson's Ratio (V), Shear Modulus (G)

Measuring the propagation speed of ultrasonic waves through the material


Need of density and thickness of the sample

- Particles vibrate in the direction of wave propagation
- Provide information about the material's elastic behavior under compression

Transverse waves (or shear waves, (V_T))

- Particles vibrate perpendicular to the direction of wave propagation.
- These waves are related to the shear behavior of the material.

$$G = \rho . V_T^2$$

$$E = \rho \cdot \frac{3V_L^2 - 4V_T^2}{\left(\frac{V_L}{V_T}\right)^2 - 1}$$

$$v = \frac{E}{2G} - 1$$

Optical Properties – Refractive Index and Abbe Number in the middle range of the visible spectrum

- Support to glass composition exploration and screening.
- Values used to establish specs for new products and validate production quality control.
- Dispersion curves for bulk materials and films are commonly used for optical modeling and product design.
- Dependent on the wavelength (i.e. frequency) of light

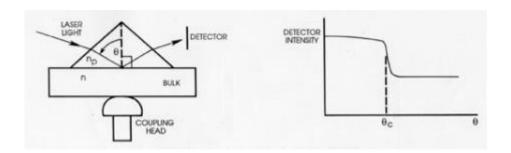
$n_1 \sin \theta_1 = n_2 \sin \theta_2$ n_2 n_2

Methods

- Refractometer (critical angle)
- Immersion (Becke line)
- Reflexion & Transmission
- Interferometry
- Spectrometry

Nombre d'Abbe

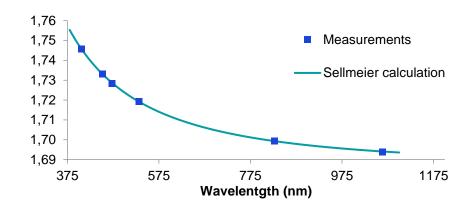
$$V_d = \frac{(n_D - 1)}{(n_F - n_C)}$$


Raie D Sodium à 589,3 nm Raie F Hydrogène à 486,1 nm Raie C Hydrogène à 656,3 nm

Optical Properties – METRICON Critical Angle Prims Coupling

- RI / birefringence of bulk materials
- RI & thickness of thin films
- Loss of optical waveguides

Principle

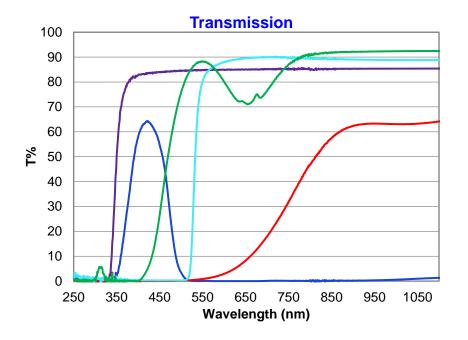


Advantages

- Cover a broad wavelength range 405-1550 nm and refractive index range (1.0- ~2,7)
- High precision: up to ±.0002
- Speed: quick and reproductible measurement
- Versatility: wide range of materials including solids, thin films and certain liquids

Limitations

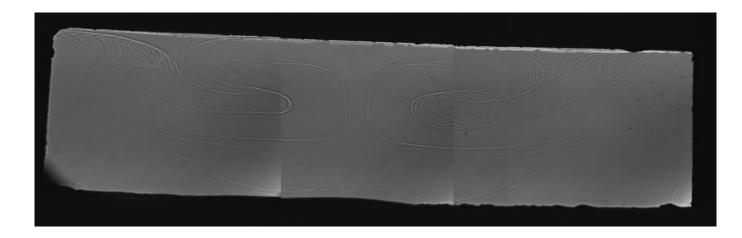
- Contact required
- Only for transparent or semi-transparent materials
- Expensive equipment

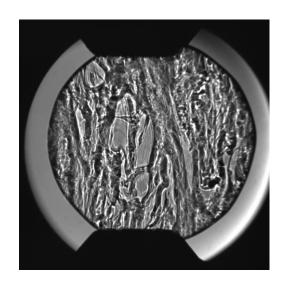


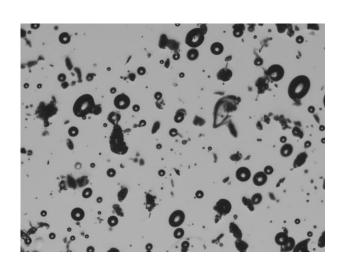
Optical Properties

UV-Vis-NIR Spectrophotometry & FTIR spectrometry

- Non-destructive technique to characterize light transmission, reflection, absorption or scatter of materials as a function of the wavelength
- Optical performance control
- Color, yellow index
- Haze
- Material identification (FTIR)






Optical Properties

Glass defects

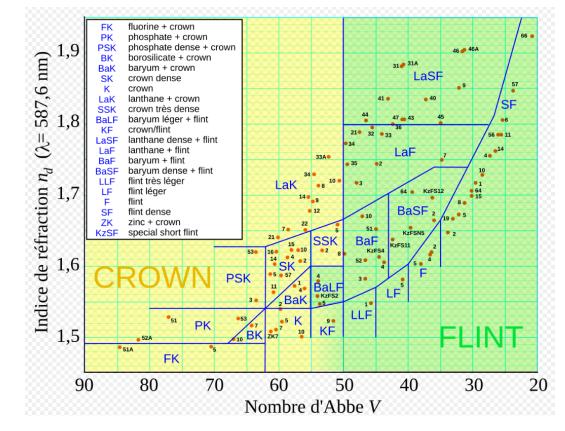
- Shadowscopy
- Bubbles count
- Defects count and characterization

Metrology

Shape and dimension control

Chemical Properties

Composition


Wide variety of glass, with very different compositions Control, standard creation, benchmark

The choice of the method depends on:

- Sample shape: bulk, fragments (cullet) powder
- Quantity of material available and its homogeneity
- Matrix
- Elements being analyzed and their level (major, minor, trace)
- Need: production control, unknown sample, new composition / quantitative, qualitative or semi-quantitative analysis
- Frequency of the measurement and the timeframe

Methods:

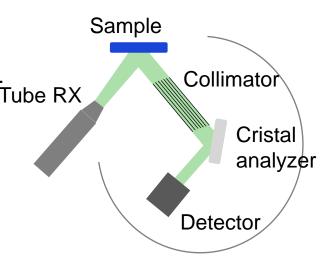
- X-ray fluorescence (wavelength or energy dispersive), µXRF, Handheld..
- Wet chemistry (complexometry, colorimetry, pH)
- Spectrometry (AA, ICP-OES, ICP-MS) CORNING

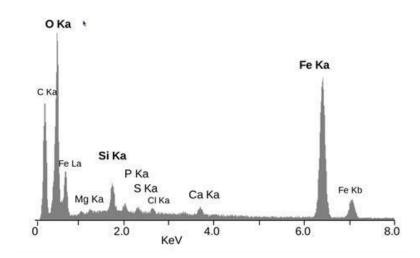
Composition – XRF Principle

Emission of characteristic "secondary" (or fluorescent) X-rays from a material (solid or liquid) that has been excited by being bombarded with high-energy X-Tube RX rays

Energy Dispersive- XRF: the detector converts each photon into an electrical pulse proportional to its energy.

Wavelength Dispersive XRF: the emitted photons diffract on a crystal of known and stable dimensions, which separates them.


The emitted spectrum is characteristic of the sample's composition


Energy/Wavelength ↔ Element

Intensity ← Concentration

Elemental range: Be – U

LLD: 0.1 ppm – 100%

Composition – XRF – Samples prep and type of analysis

Sample	Solid	Powder		Liquid
		Fused bead	Pressed pellet	
Preparation	Cutting Polishing	Milling if needed + flux	Milling if needed + wax	Liquid container
Applications	Glass Glass ceramic Metal	Mineral samples Raw material Cullet		Liquid Oil
Advantages	Rapid sample prep	Homogeneity No grains effect	No volatilization	
Disadvantages	Semi-quantitative or need of bulk standard	Volatile elements	Grains effect	Atmosphere Helium

Qualitative or semiquantitative analysis

- Based on internal system calibration
- Full scan (from B)
- Good approximation of the compo
- Ideal for unknown sample or for comparison
- Analyst experience required (interferences)

Quantitative analysis

- Calibration using dedicated standards
- Routine analysis
- Repeatability
- Simultaneous analysis of major and trace elements

Composition – XRF Systems

WDXRF

Simultaneous analysis / Na –U

Less resolution compensated by simultaneous analysis

EDXRF

Tube from 4 to 50 W (50kV)

Instrument small and compact

Minimal maintenance

No need for fluids (water, air, gas)

Sequential or simultaneous analysis (fixed positions) / Be – U

High resolution and low detection limits (light elements)

Tube power ranging from 400 to 4000 W (50 kV)

Robust analysis

High throughput (multi-position sample changer)

Systems

Benchtop

Spectrometer

Systems

Benchtop

Portable System (HHXRF)

μXRF (poly-capillary optics / beam from 100 to 30 μm)

Composition – Wet Chemistry & Spectroscopy

When XRF isn't enough

- Trace elements
- Standard creation
- Benchmark

Necessary to use wet chemistry methods

Choice based on the nature of the sample and the target element

Gravimetry: Quantification of Lead or Barium

UV-Visible Colorimetry: Based on the properties of certain ions to form colored complexes with organic reagents (e.g., quantification of Boron, Fe²⁺)

Selective Electrodes: Quantification of Fluoride

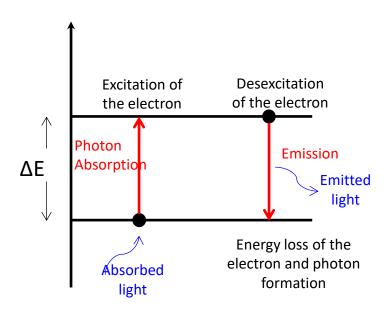
Spectroscopic Analyses

First step, milling and dissolution of the sample...

Sample Dissolution

Opened system

	Advantages	Disadvantages	
" Cold" RT	RapidNo loss of volatile elements (B, As, Sb)	Inefficient on refractory materialsHigh detection limit for impurities	
"Hot" Heating plate, Heating bloc, Infra red radiator	Efficient for some refractory materialsMatrix simplification for traces	- Loss of volatile elements	
Voie sèche Fusion alcaline	 Efficient for refractory materials (flux decreases T_{fusion}) Preliminary step to halogenide analysis 	Matrix with high level of alkalisFlux impuritiesHigh detection limits	


Sample Dissolution

Closed system

	Advantages	Disadvantages	
Heating bloc	 Gentle and thorough heating of the tubes (T < T_{boiling} acids) Limited external contamination Trace detection Limited loss due to volatilization 	- Long duration (up to 4 days)	
Microwaves	 T > T_{boiling} acids Up to 220°C Under light pressure Limited external contamination No loss due to volatilization Cycle duration < 45 min 	Limited cycle durationWashing (Teflon tube)	
Digestion bomb	 T > T_{boiling} acids Limited external contamination No loss due to volatilization Pressure-resistant material 	Maintenance (corrosion)Risk of metallic contamination	

Atomic Absorption Spectroscopy

Principle

Atomizer: converts the sample into free atoms usually by heating

- Flame atomization (air-acetylene or nitrous oxide acetylene)
- Graphite furnace atomization (higher sensitivity and detection of trace elements)

Light source: A Hollow Cathode Lamp (HCL) specific to the element being analyzed emits light at a wavelength corresponding to that element

Monochromator: isolates the specific wavelength of light absorbed by the element being analyzed

Detector: measures the intensity of light after it passes through the sample. The reduction in light intensity is proportional to the concentration of the element

$$A = log\left(\frac{I_0}{I_t}\right) = k. \, \varepsilon. \, I. \, C$$

Advantages

- ⇒ High Sensitivity
- ⇒ Specificity
- \Rightarrow Ease of use
- ⇒ Cost-effective

Disadvantages

- ⇒ Single-element analysis
- ⇒ Matrix effects
- ⇒ Detection limits
- ⇒ Throughput

Inductively Coupled Plasma Spectroscopy

Liquid Solid Sample LASER ablation **Nebulization** Vaporization chamber Generated by passing an inert gas (Ar) through a high-frequency electromagnetic field **Plasma** Plasma serves as energy source to excite atoms and ions in the sample Mass spectrometry (ICP-MS) Detection **Optical (ICP-OES)** Positively charged ions Light emission at characteristic Separation and detection based on their wavelengths mass-to-charge (m/z) ratio using a mass Mono or polychromator analyzer

Comparison

Based on similar methods

- Expected range of composition
- Calibration, line selection, calibration curve
- Blank and Quality samples

Advantages

- All materials after dissolution
- Calibration using mono or multielement solutions
- Semi-quantitative programs
- All elements except halogens
- Simultaneous analysis

Disadvantages

- Sample dissolution
- Detection limit
- Error in accuracy for major elements

	AAS	ICP-OES	ICP-MS
Sensitivity	High	High sensitivity (ppm/ppb levels)	Ultra-sensitive (ppt/ppq levels)
Detection limit	Suitable for trace	Suitable for trace and major elements	Suitable for trace elements
Isotopic analysis		No	Yes
Analysis	Single-element	Simultaneous	Simultaneous
Cost	\$	\$\$	\$\$\$
Speed	Slow	Fast	Fast

Chemical Durability

Key factors affecting chemical durability

- Glass composition: High silica content => highly resistant to chemical attack, Na_2O can reduce durability, making the glass more susceptible to water attack, Al_2O_3 or B_2O_3 can enhance durability
- pH of the environment
- Temperature
- Surface treatment

Applications requiring High Chemical Durability

- Laboratory glassware
- Optical components
- Pharmaceutical packaging
- Chemical processing equipment

Chemical Durability – Technical Glasses

	Standard	Conditions	Materials	CRM	Comments
l le calma le sti a	ISO 719	H ₂ O, 98°C 1 H	Grains	NIa	Alkali free glass?
Hydrolytic	DIN 52296	HCI titration or Na by FAAS	Flat glass	No	
Aaid	DIN 12116	Boiling HCI 6H mass loss	Glass	No	No Huge amount of acid/base used / how to reduce the waste? Representative of all type of glass? Interest of having a CRM?
Acid	ISO 1776	HCI, 100°C 3H Na, K by FAAS	Glass- ceramic	NO	
Base	ISO 695	Boiling Na ₂ CO ₃ + NaOH solution 3 H mass loss	Glass Glass- ceramic	No	

Chemical Durability – Optical Glasses

Standard	Conditions	
ISO 8424	pH 0,3 (HNO ₃) or 4,6 (buffer) 25°C 10 min up to100 H Weight loss	
ISO 10629	NaOH 50°C 15 min up to16 H Weight loss	
ISO 9689	Tripolyphosphate 50°C Weight loss	
ISO WD 13384	Water vapor saturated atm T alternate between 40 and 50°C 30 H Haze detection	