Caractérisation structurale de verre Ge-S-I pour l'élaboration et l'optimisation de fibres multimatériaux

Matthieu Chazot Matthieu.chazot.1@ulaval.ca

Sous la direction des professeurs:

Younès Messaddeq / COPL Vincent Rodriguez / ISM

GDR Verres GDR 3338

Fibres optiques multimatériaux

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, Abouraddy, and A. F., "Infrared fibers," *Adv. Opt. Photonics*, vol. 7, pp. 379–458, 2015 J. Ballato and P. Dragic, "Rethinking Optical Fiber: New Demands, Old Glasses," *J. Am. Ceram. Soc.*, vol. 96, no. 9, pp. 2675–2692, 2013 J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. a Sazio, V. Gopalan, and J. V. Badding, "Zinc selenide optical fibers," *Adv. Mater.*, vol. 23, no. 14, pp. 1647–1651, 2011

Fibres multimatériaux composées de verres Ge-S-I

P. Velmuzhov, and M. F. Churbanov, "New method for preparation of specially pure glasses in the Ge - S - I system by melting the products of thermal decomposition of Ge2S312,"

P. Velmuzhov, M. V Sukhanov, A. D. Plekhovich, G. E. Snopatin, and M. F. Churbanov, "Preparation and investigation of Ge - S - I glasses for infrared fiber optics,"

M. Zhu, X. Wang, C. Jiang, G. Tao, and X. Zhang, "Infrared Physics & Technology Freely adjusted properties in Ge – S based chalcogenide glasses with iodine incorporation,"

Compositions des verres Ge-S-I synthétisés

Fibres optiques Ge-S-I

	Tg	
Compositions	(°C)	
Ge25S70I5	275	
Ge30S65I5	360	
Ge31.6S63.4I5	370	
Ge33.93S61.13I 4.84	391	
Ge35S60I5	320	
Ge31S61I8	360	S (a
Ge25S65I10	260	
Ge30S60I10	340	75
Ge30.5S59.5I10	355	1
Ge31S59I10	375	s 100
Ge31.7S58.3I10	385	0
Ge33.5S55.7l10 .8	325	
Ge35S55I10	306	
		1

Ge

Déconvolution des spectres du verre Ge30S55I15

J. S. SANGHERA, J. HEO, and J. D. MACKENZIE. 1988

Y. Kawamoto and C. Kawashima, "INFRARED AND RAMAN SPECTROSCOPIC STUDIES ON SHORT-RANGE STRUCTURE OF VITREOUS GeS2,"

Caractérisation structurale du verre Ge30S55I15

	Position des pics (cm-1)	Attributions	
	190	I2 cristal (site 1)	
	210	I2 en solution (site 2)	
	231	vs de Gel2 dans S2Gel2 (CS)	
	243	υs de Gel2 dans S2Gel2 (ES)	
	257	vas de Gel2 dans S2Gel2 (CS)	
	266 🥄	vas de Gel2 dans S2Gel2 (ES)	
		C E	
A. Bernussi and G. M. Gulberto, "Raman Spectra of Br2, CD, and I2, on Various Substrates," <i>J. Raman Spectrosc.</i> , vol. 18, no. February 1986, pp. 93–95, 1987 H.L. Strauss, "The resonance Raman spectrum of I2 in solution," <i>J. Indian Inst. Sci.</i> , vol. 78, pp. 493–50, 1987 N. K. Durg, Gorf, Jumper, and J. J. N. Willis, Vibrational Spectra and Structure of organogemanes. Normal Modes and Torsional and Barrier of CH3GeI3 and CD3GeI3," <i>Journal Mol. Spectrosc.</i> , vol. 37, pp. 260–271, 1971			

11

Conclusion

- > Obtention de fibres optiques de verres Ge-S-I sur une large gamme de compositions
- Caractérisation structurale multimodale des verres et déconvolution simultanée des spectres IR, Raman VV et HV
- Présentation d'un nouveau modèle permettant l'attribution des bandes dans la région 180-280 cm-1 reliées au diiode

Perspectives

- Étude de l'évolution des bandes dans la région 320-460 cm-1 en fonction de la stœchiométrie Ge-S
- Déconvolution des spectres pour les verres sur-stœchiométrique en Germanium

Merci pour attention !

GDR Verres

GDR 3338

UNIVERSITÉ UNIVERSITÉ DE BORDEAUX COPL ٢ Centre d'optique, photonique et laser Institut des Sciences Moléculaires BORDEAUX N 0 R Chaire d'excellence en recherche du Canada PHIA CERCP sur l'innovation en photonique NO Canada Excellence Research Chai in Aquitain INE in Photonic Innovations 14 AQUITAINE LIMOUSIN POITOU-CHARENTES

Spectres FTIR des verres Ge-S-I

Spectres dans le visible des verres Ge-S-I

