

Caractérisations des nanomatériaux par microscopies électroniques

Nicolas Menguy

Institut de Minéralogie et Physique des Milieux Condensés

Plan

Partie 1

- Le microscope électronique en transmission (M.E.T.)
- L' échantillon de MET
- La diffraction électronique

Partie 2

- Imagerie MET conventionnelle : champ clair, champ noir
- Imagerie haute résolution
- Imagerie STEM : ADF, HAADF
- Spectroscopie XEDS
- Microscopie corrigée des aberrations

Partie 1

- Introduction
- Le microscope électronique en transmission :
 - canon, colonne
- L'échantillon de MET
 - particularités
 - préparation,
 - Focused Ion Beam (FIB)
- La diffraction électronique
 - principe de formation de l'image, de la diffraction
 - particularités de la diffraction électronique
 - application aux nano-particules

Partie 1

Introduction

- Le microscope électronique en transmission :
- L'échantillon de MET
- L' interaction électrons matière
- La diffraction électronique
 - principe de formation de l'image, de la diffraction
 - particularités de la diffraction électronique
 - applications

 Pour voir un objet de taille *d* il faut un rayonnement dont la longueur d' onde associée λ est telle que : λ < d

exemple : avec la lumière visible, la résolution limite est de l'ordre de 0.5 μm

 Pour observer la structure de la matière à l'échelle atomique il faut donc un rayonnement tel que λ ≤ 0.1 nm

⇒ Rayonnement électromagnétique avec λ ≈ 0.1 nm : rayons X problème : on ne sait pas faire de microscope à rayons X → diffraction des rayons X

comment voir la structure de la matière ?

⇒ Rayonnement électronique

• dualité onde - corpuscule / relation de De Broglie (1924) :

$$\lambda = \frac{h}{p} = \frac{h}{mv} \sqrt{1 - \frac{v^2}{c^2}}$$

 λ = 2.51 pm pour E = 200 kV

- possibilité de focaliser les faisceaux électroniques
 - → lentilles électrostatiques
 - → lentilles magnétiques
- → conception du premier microscope électronique en transmission (1931)

Ernst Ruska (Prix Nobel 1986)

comment voir la structure de la matière ?

Introduction Principe général de l'analyse des matériaux

- caractéristiques du rayonnement incident (nature, flux)
- connaissance du phénomène physique
- analyse des rayonnement réémis/diffusés (nature, flux)

Partie 1

- Introduction
- Le microscope électronique en transmission : - canon, colonne
- L'échantillon de MET
 - particularités
 - préparation,
 - Focused Ion Beam (FIB)
- La diffraction électronique
 - principe de formation de l'image, de la diffraction
 - particularités de la diffraction électronique
 - applications

Description du Microscope Électronique en Transmission

Description du Microscope Électronique en Transmission

1933

2013

Description du Microscope Électronique en Transmission

Canon électronique

Émission thermo-ionique

Filament W

Pointe LaB₆

La densité de courant à la sortie du filament est donnée par la relation de Richardson–Dushman :

$$J_0 = A T^2 \exp\left(-rac{\phi_{
m W}}{k_{
m B}T}
ight)$$

- A : Cte qui dépend du matériau
- ϕ_W : énergie d' extraction
- k_B : C^{te} de Boltzmann
- T : température

Canon électronique

Émission de champ froide (CFEG)

- La pointe est constituée d'un monocristal de W (310)
- La forme de la pointe est telle (r ≤ 0.1µm) qu' un champ important existe au niveau de la pointe (10⁷ V cm⁻¹).

Les e- sont extraits par effet tunnel

• La densité de courant est donnée par la relation de Fowler–Nordheim :

$$J = rac{k_1 E^2}{\phi_{\mathrm{W}}} \exp\left(-rac{k_2 \phi_{\mathrm{W}}^{3/2}}{E}
ight) \quad k_1 ext{ et } k_2 : ext{constantes}$$

 La production d' électrons se fait en deux temps : extraction → à tension fixe accélération → à tension variable

Canon électronique Émission thermo-ionique assistée : effet Schottky (FEG)

- La pointe est constituée d'un monocristal de W recouvert de ZrO. L'énergie d'extraction est abaissée à 2.7 eV.
- La forme de la pointe est telle (r \approx 0.1 µm) qu'un champ important existe au niveau de la pointe (10⁷ V cm⁻¹).

$$J = A T^2 \exp\left(-rac{\phi_{\mathrm{W}} - \Delta \phi_{\mathrm{W}}}{k_{\mathrm{B}}T}
ight) \qquad \mathrm{avec} \ \Delta \phi_{\mathrm{W}} = \mathrm{e} \ \sqrt{rac{eE}{4\pi\varepsilon_0}}$$

- À partir d'une valeur critique du champ E, l'émission est similaire à celle d'un canon à émission de champ.
- La production d' électrons se fait également en deux temps :

extraction	→ à tension fixe
accélération	\rightarrow à tension variable

	W	LaB ₆	W (FE)	W-ZrO (SE)
Énergie d'extraction (eV)	≈ 4.5	2.7	4.5	2.7
Densité de courant [A cm ⁻²]	1.3	≈ 25	$10^4 - 10^6$	500
Température de fonct ^{nt} [K]	2800	2000	300	1800
Brillance [A cm ⁻² sr ⁻¹]	5 10 ⁴ - 5 10 ⁵	3 10 ⁵	5 10 ⁷ - 2 10 ⁹	10 ⁸
Diamètre du cross-over [µm]	20 - 50	10 – 20	0.01≤	0.015
Dispersion en énergie [eV]	1 – 2	0.5 – 2	0.2 – 0.4	0.3
Durée de vie [h]	25	150 - 200	> 1000	> 5000

Canon électronique Comparaison des différents types de canon

> Colonne Système condenseur

10-5

Pression de fonct^{nt} [Pa]

Le système condenseur (illumination) est constitué de 3 éléments :

10-9

< 10⁻⁸

condenseur C1

10-6

- condenseur C2
- diaphragme condenseur

Son rôle est de contrôler le faisceau d'électrons au niveau de l'échantillon :

- taille du faisceau
- · intensité du faisceau
- convergence du faisceau

- Introduction
- Le microscope électronique en transmission : - canon, colonne

• L'échantillon de MET

- particularités
- préparation,
- Focused Ion Beam (FIB)
- La diffraction électronique
 - principe de formation de l'image, de la diffraction
 - particularités de la diffraction électronique
 - applications

Préparation des échantillons par FIB Focused Ion Beam

Problème posé : Défaillance d'un circuit imprimé.

- Hypothèses ; il s' agit d' un défaut apparu lors de l' élaboration du composant
- ⇒ il faudrait pouvoir analyser en profondeur tout en gardant une bonne résolution spatiale

Faisceau d' ions Ga+

Préparation des échantillons par FIB Focused Ion Beam – ex situ lift out

Préparation des échantillons par FIB Focused Ion Beam – *in situ* lift out

Partie 1

- Introduction
- Le microscope électronique en transmission :
 - canon, colonne
- L'échantillon de MET
 - particularités
 - préparation,
 - Focused Ion Beam (FIB)
- La diffraction électronique
 - principe de formation de l'image, de la diffraction
 - particularités de la diffraction électronique
 - applications

e⁻ transmis

Interactions Électrons - Matière Diffusion élastique - Diffusion inélastique

Si l' échantillon est suffisamment mince (< 100 nm), des e⁻ peuvent le traverser :

- sans être déviés, sans perdre d'énergie : e- transmis
- en étant déviés, **sans** perdre d'énergie ; e- diffractés
 - \Rightarrow diffusion élastique
 - \rightarrow diffraction

• en étant déviés et en perdant de l'énergie :

- \Rightarrow diffusion inélastique
- → spectroscopie de perte d'énergie (EELS)

Mode IMAGE et mode DIFFRACTION

Comme les lentilles sont électromagnétiques, il est possible de faire varier continûment leur distance focale :

- condenseur : focaliser le faisceau
- lentille objectif : faire varier la mise au point
- système projecteur : agrandir le plan image de la lentille objectif
 agrandir le plan focal de la lentille objectif

Magnétite Fe₃O₄

Diffraction selon un axe de zone <110>

Mode IMAGE et mode DIFFRACTION

Mode IMAGE et mode DIFFRACTION

Diffraction des électrons

- Les e⁻ voient le potentiel cristallin Le cristal se comporte comme un réseau
- ⇒ possibilité d'observer une diffraction du faisceau électronique par le réseau
- $V_{\text{atomique}} \approx 200 300 \text{ V}$

La condition de diffraction par des plans de la famille de plans (hkl) peut être décrite :

dans l'espace direct :

Interférences constructives si la différence de chemin optique = n λ

$$2 d_{\rm hkl} \sin\theta = n \lambda$$

dans l'espace réciproque :

Interférences constructives si le vecteur de diffusion est égal à un vecteur du réseau réciproque

$$\begin{aligned} \vec{\mathbf{Q}} &= \vec{\mathbf{k}} - \vec{\mathbf{k}}_0 = \vec{\mathbf{G}}_{hkl}^* \\ \left| \vec{\mathbf{G}}_{hkl}^* \right| &= \left| \vec{\mathbf{k}} - \vec{\mathbf{k}}_0 \right| = 2 \sin\theta \times \left| \vec{\mathbf{k}}_0 \right| \\ \Leftrightarrow \quad \frac{1}{d_{hkl}} = 2 \sin\theta \times \frac{1}{\lambda} \end{aligned}$$

Diffraction des électrons Rappel : description d'Ewald dans le cas des rayons X

Un faisceau de rayons X est diffusé à chaque fois qu'un nœud du réseau réciproque du cristal intercepte la sphère d'Ewald

 $\lambda \approx d_{hkl} \implies k \approx 1/d_{hkl} \implies Un \text{ seul nœud à la fois est intercepté}$

Diffraction électronique dans le MET (1)

conséquences de la longueur d'onde des e-

Loi de Bragg

- À 200 kV, $\lambda = 0.0251$ Å
- Pour le silicium, $d_{111} = 3.13$ Å

⇒ On observera la diffraction des e⁻ par les plans (111) du Si pour $\theta \approx 0.22^{\circ} \approx 4$ mrad

En diffraction électronique (e⁻ de haute énergie), les angles de diffraction sont petits : ≤ 1°

⇒ Le rayon de la sphère d' Ewald est >> la distance entre nœuds du réseau réciproque

Diffraction électronique dans le MET conséquences de (1) et (2)

Selected Area Electron Diffraction (SAED)

La méthode est peu précise : +/- 0.05 Å

Diffraction électronique dans le MET Applications

Applications

- Nature amorphe / cristalline d'un matériau
- Étude cristallographique de nano-particules
- Étude de composés multiphasés
- Identification de phases
- Étude d'interface, de défauts

Applications Distinctions amorphe / cristal

Étude de l'interface Silicium - Pyrex par collage anodique

Nature cristalline de l'échantillon

Nature amorphe du pyrex \Rightarrow pas de cristallisation

Diffraction électronique d'une assemblée de cristaux

Analogue à la méthode de Debye et Scherrer en diffraction des rayons X

- Nécessité de connaître la composition !
- La précision de la diffraction électronique n' est pas suffisante pour
- déterminer sans ambiguité la nature d'une phase (≠ diffraction des rayons X)

Applications identification de composés cristallins

Diffraction électronique d'un cristal au sein d'un verre amorphe

[cubique F 111] zone axis

 \rightarrow diffractions compatibles avec phase spinelle, a \approx 8.05 Å

Plusieurs diffractions : \rightarrow type de structure des phases cristallines formées

Applications identification de composés cristallins

Composition chimique d'un cristal au sein d'un verre amorphe

 \rightarrow composition compatible avec phase spinelle NiAl₂O₄

Plusieurs diffractions associées à la composition chimique permettent d'identifier la nature des phases cristallines formées

Diffraction électronique et Transformée de Fourier Analyse locale à partir d'images haute résolution

Diffraction électronique et Transformée de Fourier Analyse locale à partir d'images haute résolution (HREM)

La diffraction numérique peut représenter une alternative à la diffraction électronique conventionnelle

Application de la Transformée de Fourier des images HREM Étude des morphologies cristallines

Analyse cristallographique par Transformée de Fourier

On ne peut pas déduire la morphologie 3-D de cette image ! Il s' agit une vue en Projection !!! → TOMOGRAPHIE

Application de la diffraction Étude de mise en ordre locale de Pb₂(Sc;Nb)O₆

Intérêt des porte-objet double-inclinaison

Application de la diffraction

Étude de mise en ordre locale de Pb₂(Sc;Nb)O₆

Mise en évidence des surstructures par diffraction électronique

Phase désordonnée : les réflexions de surstructure sont de très faible intensité

Phase ordonnée : les réflexions de surstructure sont intenses

Application de la diffraction Étude de mise en ordre locale de Pb₂(Sc;Nb)O₆

- Coexistence des phases ordonnée et désordonnée
- ⇒ la mise en ordre Sc³⁺/Nb⁵⁺ est une transition du premier ordre

Application de la diffraction Étude de défauts

Défauts dans des nano-particules de magnétites Fe₃O₄

Diffraction inhabituelle !!!

Deux cristaux avec une orientation cristallographique commune → maclage

Application de la diffraction Étude de défauts

Plan de macle (111)

Deux cristaux avec une orientation cristallographique commune

Bibliographie

David B.Williams and C. Barry Carter "Transmission Electron Microscopy : A text books for materails science" Plenum Press.New yYork and London 1996

• Eberhardt J.P. "Analyse structurale et chimique des matériaux. Diffraction des rayons X, électrons et neutrons. Spectrométrie des rayons X, électrons et ions. Microscopie Electronique." Science Sup. 1989: DUNOD

- Site de Florent Houdelier : <u>http://www.cemes.fr/microscopie/Introduction.htm</u> (MET)
- <u>http://www.matter.org.uk/tem/default.htm</u> (MET)
- http://www.mse.arizona.edu/classes/mse480/grouppages/group2/tem/p1.htm (MET)
- <u>http://em-outreach.ucsd.edu/web-course/toc.html</u> (MET)
- http://www.cmeba.univ-rennes1.fr/niveau2/PagePrincipeMEB.htm (MEB)
- <u>http://www4.nau.edu/microanalysis/Microprobe/Course%20Overview.html</u> (MEB Microsonde)
- <u>http://www.x-raymicroanalysis.com/pages/tutorial2/introduction.htm</u> (Analyse X / EDS WDS)