

CHEMISTRY: MOLECULES TO MATERIALS

Chalcogenide glasses compositions vs structure

A. Pradel

Institut Charles Gerhardt

Université de Montpellier, France

• Chalcogenide glass formers

- Structure
- Comparison oxide / chalcogenide [SiO₂/SiS(e)₂]
- Ion conducting chalcogenide glasses (Modifier + Former)
 - Depolymerization of glassy network (edge sharing/corner sharing tetrahedra; bridging / non bridging sulfur/selenium); ²⁹Si NMR, XPS
 - Phase separation in Ag⁺ conducting chalcogenide glasses; Near field microscopy

• Mixed Glass Former Effect

Heterogeneous versus homogeneous mixing; Li₂S-SiS₂-GeS₂; Raman, SAXS

• Mixed Alkali Effect

Cation distribution in the glassy network; Li₂S-Na₂S-GeS₂; REDOR NMR

Cation environment and glassy network rearrangement; Ag₂S-Rb₂S-GeS₂; Raman, EXAFS, SAXS

• Conclusions

Chalcogenide glass formers Role of chalcogen on the structure

Homologous to SiO₂ and GeO₂ –stoichiometric glasses

Ia																	0
1 H	IIa											IIIa	IVa	Va	VIa	VIIa	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	IIIb	IVb	Vb	VIb	VIIB		VIII	b	Ib	IIb	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Unq	¹⁰⁵ Unp	106 Unh	107 Uns											
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

 $SiS(e)_2$, $GeS(e)_2$

Role of chalcogen on the structure

SiO₂ Quartz

3D-structure. Each (SiO₄) Td shares its 4 corners with 4 neighbouring Td

Chalcogenide glass formers

Role of chalcogen on the structure

SiSe₂ Low Temperature form

Projection 001

Blocks of edge sharing Td These « blocks » are linked together by corners : a complex structure

SiS₂, SiSe₂ High Temperature form

Chains of edge-sharing Td 1D-structure

Chalcogenide glass formers

Role of chalcogen on the structure

$\text{GeS}_2\,\beta$ (High temperature form)

Projection 100

b.€

2D-structure. A plan comprises chains of edge and corner sharing Td (projection (100)). These chains are connected by corners (projection (001))

$\text{GeS}_{2}\,\alpha$ (Low temperature form)

3D-structure. Each Td shares its 4 corners with 4 neighbouring Td

Projection 001

Chalcogenide glass formers Role of chalcogen on the structure

Zachariasen enounced 4 rules to define what is a glass former (in oxides)

Rule # 3 : constituting polyhedra should share only corners !

As a matter of fact, GeS_2 can be obtained rather easily (air quenching); SiS(e)₂ require fast quenching

Smekal model : co-existence of different types of forces

Van der Waals + covalent

²⁹Si MAS NMR

Role of chalcogen on the structure

Crystalline SiSe₂

Role of chalcogen on the structure

Role of chalcogen on the structure

²⁹Si MAS NMR

Crystalline SiSe₂

Chalcogenide glass formers

²⁹Si MAS NMR

Role of chalcogen on the structure Glass SiSe₂

CHEMISTRY: MOLECULES TO MATERIALS

Chalcogenide glass formers

Role of chalcogen on the structure

Glass SiS₂

Chemical shifts amplitude : 28 ppm against 62 ppm in the case of selenide glasses

Chalcogenide glass formers

Role of chalcogen on the structure

Glass GeS₂

$GeS_2 \beta$ (High temperature form)

CHEMISTRY: MOLECULES TO MATERIALS

Chalcogenide glass formers

To summarize

Co-existence of corner-sharing tetrahedra and edge-sharing tetrahedra

Predominance of edge-sharing Td for SiS(e)₂

Predominance of corner-sharing Td for GeS(e)₂

²⁹Si NMR E^0 E^1 E^2

Modified chalcogenide glasses Role of modifier on the structure

Modified chalcogenide glasses

Vitreous transition temperature

for the first addition of alkali

Conductivity in chalcogenides much larger than in oxide (2.5 orders of magnitude)

System xLi₂Y-(1-x)SiY₂, Y = O, S, Se

Large increase in ion conductivity with addition of alkali ions (Li content x 2 \rightarrow Gain of 2 orders of magnitude in conductivity)

For oxide glasses

SiO₂

+

 M_2O

M = Li, Na, Ag

Entités Qⁿ

Role of modifier on the structure

Modified chalcogenide glasses Role of modifier on the structure

E² **E**⁰ **E**¹ R (H) 8110 $B(x) \in \mathbb{R}$ Q⁴ Q³ Q² Q^1 20.0 8.84 Links and the **Q**⁰

+ M₂S(e) M = Li, Na, Ag

SiS(e)₂

Creation of non bridging sulfur

EⁿQⁿ Entities

CHEMISTRY: MOLECULES TO MATERIALS

Modified chalcogenide glasses

Role of modifier on the structure

1st step

Identification of crystalline phases; identification of their EⁿQⁿ building entities

Identification of corresponding chemical shifts in ²⁹Si NMR spectra

2nd step

Obtention of ²⁹Si NMR spectra of corresponding glassy compositions

Identification of their EⁿQⁿ building entities by comparison with NMR spectra of crystalline phases

Modified chalcogenide glasses

System xNa₂S- (1-x)SiS₂

X = 0.5

Na₂SiS₃ glass contains both E¹ and E⁰ entities

Preferential destruction of edgesharing tetrahedra in the case of Liglasses

Modified chalcogenide glasses Role of modifier on the structure

System xM_2S - (1-x)SiS₂ with M = Li, Na, Ag X = 0.5

Preferentiel destruction of edge-sharing tetrahedra in any case, increasing from Na to Li to Ag

Investigation of crystalline phases in the system xLi₂Se- (1-x)SiSe₂

chemical shifts between different E²Q⁴ units (SiSe₂ high, intermediate and low T) and between different E¹Q² units (2 E¹Q² sites in intermediate T SiSe₂ + 1 E¹Q² site in low T SiSe₂)

Investigation of crystalline phases in the system xLi₂Se- (1-x)SiSe₂

large chemical shifts between different E^0Q^n units (E^0Q^4 site in intermediate-T SiSe₂ + E^0Q^0 site in Li₄SiSe₄ + E^0Q^1 sites in Li₆Si₂Se₇ (Li₁₀Si₃Se₁₁)

²⁹Si NMR sensitive to Qn entities in selenides

Investigation of crystalline phases in the system xLi₂Se- (1-x)SiSe₂

²⁹Si NMR sensitive to Qn entities in selenides

Modified chalcogenide glasses

Investigation in the system xLi₂Se- (1-x)SiSe₂

X = 0.5

Which units for Li₂SiSe₃ **E⁰Q²** or **E¹Q²** ?? **CHEMISTRY: MOLECULES TO MATERIALS**

x 0.70

0.63

0.56

0.48

0.44

0.33

0.0

ppm

Chemical Shift vs. TMS

Distribution of non-bridging Se sites is closer to random than to ordered

XPS investigation

more homogeneous electronic
distribution on sulfur atoms
in the silver glass

Δ[E _b (Ge3p)-E _b (S2p)]								
Ag_2GeS_3	0.6 eV	a much more important electronic redistribution						
Li ₂ GeS ₃	0.8 eV	along Ge-S bonds when the modifier cation						
Na_2GeS_3	1.2 eV	changes from Ag to Na						

Modified chalcogenide glasses

To summarize

Existence of bridging and non-bridging S(e)

Trend to the destruction of edge-sharing Td increasing from Na to Li to Ag

Random distribution of modifier cations on the Td

System Li₂S- [(1-x)SiS₂-xGeS₂]

System Li₂S- [(1-x)SiS₂-xGeS₂]

0.3 Li₂S 0.7[(1-x)SiS₂ xGeS₂]

0.5 Li₂S 0.5[(1-x)SiS₂ xGeS₂]

Conductivity and E_s

Maximum in σ and minimum in activation energy for ~ 50:50 ratio in former content Smooth change in both σ and activation energy

System Li₂S- [(1-x)SiS₂-xGeS₂]

0.3 Li₂S 0.7[(1-x)SiS₂ xGeS₂]

0.5 Li₂S 0.5[(1-x)SiS₂ xGeS₂]

0.3 Li₂S 0.7[(1-x)SiS₂ xGeS₂]

✓ A sudden change in the structure

Raman Spectroscopy

0.5 Li₂S 0.5[(1-x)SiS₂ xGeS₂]

✓ A *smooth change* in the structure

CHEMISTRY: MOLECULES TO MATERIALS

xLi₂S- (1-x)SiS₂

Different medium range order

No possible mixing of the two formers

Complete phase Separation (Tenhover 1983)

x=0.3 different MRO
phase separation

x=0.5 similar MRO
Complete solid solution

Raman Spectroscopy

0.45GeS₂]

Activation Energy

Mixed glass former effect

Conductivity

 σ (phase separated glasses) ~ σ (0.5Li2S- 0.5[(1-x)SiS2-xGeS2])

 E_{σ} (phase separated glasses) ~ E_{σ} (0.5Li2S-0.5[(1-x)SiS2-xGeS2])

To summarize

Similar structure for the formers \rightarrow homogeneous mixing

Dissimilar structure for the formers \rightarrow heterogeneous mixing

Strong consequence on both thermal and electrical properties

Non-linear variation of several physicochemical properties

Minimum in T_g and σ and maximum in E_σ

Well known « mixed alkali effect » systematically observed when two mobile ions are mixed in a glassy matrix whatever the atoms involved Hardly studied in chalcogenide glasses

SAXS investigation discarded the existence of any **phase separation** at a mesoscopic scale (10-1000 Å)

Structural investigation of the cation environment

	x	0.2	0.4	0.6	1
	N _{Ag-S}	2.7±0.2	2.8±0.1	2.8±0.2	2.8±0.1
_	- AU (A)	0.07 ± 0.01	0.07 ± 0.01	0.00 - 0.01	0.00 - 0.01
	R (Å)	$2.50 {\pm} 0.01$	2.51 ± 0.01	$2.50\!\pm\!0.01$	2.51 ± 0.01
	$\Delta E_0 (eV)$	1.1 ± 0.2	1.4±0.2	0.9±0.2	0.9±0.1

For all compositions Coordination number N $_{Ag}$ ~ 2.8 Bond length Ag-S ~ 2.50 Å $\Delta \sigma$ = 0.08Å (disordered environment)

No influence of the presence of Rb

Structural investigation of the cation environment

Rb K-edge EXAFS measured at 35K

Rb *K*-edge Fourier filtered oscillations of 0.5 [1-*x*)Rb₂S-*x*Ag₂S]-0.5GeS₂ glasses.

x	0	0.2	0.4	0.6
N _{Rb-S}	4.2±0.2	4.2±0.2	4.1±0.2	4.3±0.2
$\Delta \sigma$ (A)	0.14 ± 0.01	0.14±0.01	0.14±0.01	0.13 ± 0.01
R (Å)	3.37 ± 0.01	3.37 ± 0.01	3.37 ± 0.01	3.38 ± 0.01
ΔE_0 (eV)	1.6 ± 0.3	0.9±0.3	1.4 ± 0.3	1.2 ± 0.2

For all compositions Coordination number N _{Rb} \sim 4 (Td) Bond length Rb-S \sim 3.37 Å $\Delta \sigma$ = 0.14Å (highly distorted sites)

No influence of the presence of Ag

Structural investigation of the glassy network

Clear structural rearrangements upon gradual replacement of Rb₂S by Ag₂S.

Nonmonotonic evolution - strong departure for x = 0.2 and 0.4

Structural investigation of the glassy network

X = 0.4

Linear combinations
 of the end-member
 spectra (x=0 and 1)

CHEMISTRY: MOLECULES TO MATERIALS

Experimental spectra

A simple linear mixing of the structures of the two end-member glasses cannot reproduce the thiogermanate structure of the cation-mixed glass.

CHEMISTRY MOLECULES TO MATERIALS

Structural investigation of the glassy network

Shift of v (Ge-S⁻) of Q^2 Td units to higher frequency \rightarrow local strain effects

Increase in Q² units for x= 0.2 and 0.4 \rightarrow a more homogeneous glass structure and a more uniform distribution of anionic sites hosting the Rb⁺ and Ag⁺ cations

Mixed Anion Effect

To summarize

The environment of the cations is not affected by the presence of another cation in the network

The network relaxes to adjust to maximize the distance between dissimilar cations creating a more homogeneous matrix

Strong consequence on both thermal and electrical properties

Conclusions

Chalcogenide glasses different from oxide glasses

Presence of edge-sharing Td

But also many similarities

Bridging vs non-bridging chalcogens Mixed glass former effect Mixed alkali effect

THANK YOU !

CHEMISTRY: MOLECULES TO MATERIALS

Modified chalcogenide glasses

Investigation of crystalline phases in the system xLi₂Se- (1-x)SiSe₂

No apparent chemical shift between E^nQ^4 units and E^nQ^2 units

System Li₂S- [(1-x)SiS₂-xGeS₂]:: Conductivity and Ecules to MATERIALS

Mixed glass former effect: Chalcogenide glasses

Modified chalcogenide glasses Role of modifier on the structure

SiS₂

Crystalline compounds

System xNa₂S- (1-x)SiS₂

X = 0.5

No apparent chemical shift between E^nQ^4 units and E^nQ^2 units

