

Chemical thermodynamics in industrial processes

Thermodynamic Modeling of Combustion Processes – Applications and Limitations

Leena Hupa Åbo Akademi Combustion and Materials Research

> ICG –TC3: School Thermodynamic of Glass Erlangen, Germany, 12.5.2019

Combustion and materials research

chemistry of high-temperature processes properties of high-temperature materials

Biomass combustion

- Biomass characterization
- Thermal conversion of fuel particles
- Emissions
- High temperature corrosion and erosion

Circular economy

- Refining of metals from ashes and sludges
- Utilization of sidestreams as raw materials
- Material interactions

Ceramics and glasses

- Glazes on sanitaryware and ceramic tiles
- Functional coatings
- Tableware glasses
- Mineral wool
- Concrete

Biomedical materials

- Bioactive glasses
- Bioactive glass biopolymer composites
- Tissue engineering scaffolds
- Dissolution behaviour in body environment

inorganic materials and high-temperature processes

Circulating fluidized bed combustion

Challenges in Biomass and Waste Combustion - chemical details

Fluidized bed combustion – ash related challenges

Åbo Akademi measurement campaigns

Equilibrium Calculations in Combustion Systems

- Gaseous Combustion Equilibria
- Solid-Gas Equilibria
- Equilibria with a Molten Phase
- Equilibria and NOx

Equilibrium Calculations in Combustion Systems

- Gaseous Combustion Equilibria
- Solid-Gas Equilibria
- Equilibria with a Molten Phase
- Equilibria and NOx

Gaseous Combustion Equilibria:

Methane combustion as a function of lambda

Stoichiometric reaction: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

T = 1623.00 KP = 1.01325E+00 bar

	Input amount	Equil. amount	Equil. pressure
	(mol)	(mol)	(bar)
CH ₄	0.10000E+01	0.28810E-14	0.23503E-15
02	0.24000E+01	0.39950E+00	0.32590E-01
N ₂	0.90200E+01	0.90200E+01	0.73583E+00
CO ₂	0.00000E+00	0.99985E+00	0.81565E-01
H ₂ O	0.00000E+00	0.19987E+01	0.16305E+00
СО	0.00000E+00	0.15127E-03	0.12340E-04
OH	0.00000E+00	0.24237E-02	0.19772E-03
H ₂	0.00000E+00	0.95625E-04	0.78008E-05
0	0.00000E+00	0.42256E-04	0.34472E-05
Н	0.00000E+00	0.23646E-05	0.19290E-06

IN (mol)

OUT (mol)

Methane/Air Combustion Equilibrium as a Function of Air Factor (at 1100 C)

Gaseous Combustion Equilibria

Energy balance and adiabatic combustion temperature

Equilibrium in Combustion of CO vs. Air Factor (1500 °C)

Flue gas composition

Equilibrium in Combustion of CO vs. Temperature ($\lambda = 1.2$)

Equilibrium in Combustion of CO with **Air** – Adiabatic Temperature vs. Air Factor

Equilibrium in Combustion of CO with **Oxygen** – Adiabatic Temperature vs. Lambda

Gaseous combustion:

How "true" is the equilibrium assumption?

Methane/Air Combustion Equilibrium as a Function of Air Factor (at 1100 ° C)

Combustion of methane (1 vol-%) with air, 850 ° C Kinetic model calculation.

Stoichiometric reaction: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Combustion of methane (1 vol-%) with air, 850 ° C **Kinetic** model calculation.

Stoichiometric reaction: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Gaseous combustion:

How "true" is the equilibrium assumption?

Typical time to equilibrium: For T = 850 ° C, time = 0.05 - 1 s For T=1500 ° C, time = 1 - 10 ms

Equilibrium Calculations in Combustion Systems

- Gaseous Combustion Equilibria
- Solid-Gas Equilibria
- Equilibria with a Molten Phase
- Equilibria and NOx

Solid-Gas Equilibria:

Capture of SO₂, HCI, HF by Limestone

Bubbling Fluidized Bed Combustion with Limestone Addition

IN (mol)

OUT (mol)

Sulfur Captured in CaSO₄ at $\lambda = 1.3$

Sulfur Captured in CaSO₄ at $\lambda = 1.3$, and in CaS at $\lambda = 0.7$

Captured HCl and HF vs. Temperature ($\lambda = 0.7$)

The Impact of Temperature on SO₂, HCI and HF Capture with Limestone Addition

	650 ° C		1050 °C	
	mol	%-absorption	mol	%-absorption
SO ₂ (g) CaSO ₄ (s)	6·10 ⁻¹⁰ 0.080	100.0	0.0017 0.0783	97.9
HCl (g) CaCl ₂ (s)	0.0346 0.0002	1.2	0.0350 -	0.0
HF (g) CaF ₂ (s)	0.0018 0.0021	69.8	0.0060 -	0.0

.....

Summary: solid-Gas Equilibria

- Equilibrium modeling gives boundary conditions to gas reactions
- Equilibrium percent capture or percent solid conversion case (input) dependent and not generalizable
- Kinetic information needed about solid reactivity and conversion rate

Equilibrium Calculations in Combustion Systems

- Gaseous Combustion Equilibria
- Solid-Gas Equilibria
- Equilibria with a Molten Phase
- Equilibria and NOx

Equilibria with a Molten Phases:

Black Liquor Recovery Boiler and Alkali Salts

Recovery boiler – a part of chemical pulping process

Courtesy of Valmet

As-Fired Black Liquor Composition (800 liquor samples; All Wood Species)

		Typical	Range
	Solids content, %	72	65 – 85
	HHV, MJ/kg	13.9	12.5 – 15.5
Composition	C, wt% d.s.	33.9	30 – 40
	Н	3.4	3.2 – 4.0
	0	35.8	34 – 38
	Na	19.6	17 – 22
	S	4.6	3.6 - 5.6
	Κ	2.0	1 – 3
	CI	0.5	0.1 – 4

Black Liquor Recovery Furnace

L. Pejryd, M. Hupa

VOLUME CONCENTRATION

100 %

10 %

1 %

1000 ppm

100 ppm

10 ppm

1 ppm

 N_2

CO

40

NaOH

502

1200

1200

L. Pejryd, M. Hupa

Salt Mixture Melting at Increasing Temperatures

Equilibria with a Molten Phases:

Percentage of Liquid Phase

NaCI – Na₂SO₄ -system

Percentage of Melt vs Temperature 4 % NaCI - 96 %NaSO4

Percentage Melt vs. Temperature for an Alkali Salt Mixture

Percentage Melt vs. Temperature for an Alkali Salt Mixture

FB-combustion, ash related challenges

Equilibria with a Molten Phases:

Sticky Fly Ash and T₀

Percentage Melt vs. Temperature for an Alkali Salt Mixture

Entrained Flow Particle Reactor

University of Toronto

Stickiness of Salt Particles vs. Temperature and Composition

Stickiness of Partially Molten Particles Entrained Flow Reactor Tests in Toronto

Equilibria with a Molten Phases:

Flowing Deposits and T₇₀

STEADY-STATE DEPOSIT THICKNESS

Percentage Melt vs. Temperature for an Alkali Salt Mixture

Air Cooled Probes after Exposure in Flue Gases

Probe Surface Temp 500 C Flue Gas Temp 950 C

15 min

90 min

180 min

Melting temperature of ash

Hanna Kinnunen, Valmet

Equilibria with a Molten Phases:

High Temperature Corrosion and T₀

STEADY-STATE DEPOSIT THICKNESS

Corrosion test with alkali salt deposits on steel at 550 C

0 % molten phase in deposit

5 % molten phase in deposit

Corrosivity of a fuel mixture from thermodynamic calculations

- formation of gaseous HCI, KCI and NaCI
- condensation of solid KCI
- → corrosion risk in superheater area
- correlating results to empirical corrosion data from existing boilers
- → superheater material selection and corrosion rate estimation

Equilibrium Calculations in Combustion Systems

- Gaseous Combustion Equilibria
- Solid-Gas Equilibria
- Equilibria with a Molten Phase
- Equilibria and NOx

Nitrogen species in a typical flue gas under chemical equilibrium conditions

- Most abundant ones
 λ=1.1: N₂, NO, NO₂, N₂O
 λ=0.9: N₂,HCN, NH₃
- Equilibrium conc. of NO_x decreases with temp. data from flue gas with λ =1.1: T=1800 K 1200 ppm T=500 K <1ppm

Schematic view of NO Formation in Boilers

- Chemical Equilibrium vs. Kinetics

Combustion of Natural Gas with Air. **Kinetic** Modeling.

NO concentration in cooling flue gases. Curves for different cooling rates. (Methane/air flue gas at $\lambda = 0.9$)

......

NOx – Fuel Oil with Organic Nitrogen Addition

Based on Martin and Berkan, Air pollution and its control, AICHE symp. Series 68, Nr 126, 45, 1972

Equilibrium and NOx

- Forget except at very high temperatures (2500+ °C)
- Formation chemistry slow and sensitive to initial form of input nitrogen (N₂, org-N)
- Decomposition chemistry "frozen" at below 1500 ° C

Equilibrium Modelling (EM) and Combustion - Conclusions

- Gas phase: EM standard and relevant (but T > 800 ° C)
- Solid-gas: EM gives boundary conditions for gas-solid reactions
- Kinetic information needed of the extent of solid conversion
- Molten phases: EM well developed for simple alkali salts
- Percentage liquid phase interesting for melt rheology, stickiness and corrosion
- Work needed to expand the melt system
- NOx: Forget EM except > 2500 ° C! (Kinetic models available)

Acknowledgements

Åbo Akademi Prof. Mikko Hupa Dr. Oskar Karlström Dr. Emil Vainio Dr. Markus Engblom Dr. Fiseha Tesfaye Dr. Patrik Yrjas Prof. Daniel Lindberg Dr. Maria Zevenhoven Dr. Juho Lehmusto

Valmet Technologies Dr. Sonja Enestam Ms. Hanna Kinnunen