

1

Conductivité électrique dans les verres et liquides à haute température

M. Malki, L. del Campo, H. Fan, P. Echegut

CEMHTI, CNRS, UPR 3079, Orléans, France **Polytech Orléans** – Université d'Orléans, France

Quelques rappels

Conductivité électrique : <u>propriété macroscopique</u> caractérisant le transport de charges dans les matériaux

$$\vec{i} = \sigma \cdot \vec{E} | \sigma$$
 : scalaire pour les verres (tenseur en général : cristaux)

 $\sigma = q\mu n$

q : charge électrique
μ : mobilité
n : densité de charges

Conductivité électrique : $\sigma = (S/cm)$, unité SI (S/m) Résistivité électrique $\rho = 1/\sigma$ (Ω .cm). (1S = 1 Ω ⁻¹)

 $\mu = \frac{q}{kT}D$

D : coefficient de diffusion

- En général, verres d'oxydes ----- conductivité ionique
- Une conductivité électronique peut exister dans les verres :
 - Verres métalliques
 - Verres contenant des éléments avec 2 états d'oxydation (Fe, V, Mo,...)
 - Verres contenant des particules métalliques (Pd, Rh) or RuO₂

Ordres de grandeur de la conductivité électrique

Les verres d'oxydes (ioniques) sont essentiellement des **isolants électriques**

Mesure de la conductivité du verre (solide)

Acquisition des données (ω , T, R, X) : programme LabView

4

Exemple : système CaO-SiO2

Système peu étudiés (hautes températures, tendance à la cristallisation)

Compositions élaborées

xCaO-(1-x)SiO ₂	(% molaire)
x = 42	
x = 44	
x = 47	
x = 50	
x = 53	

Température de transition vitreuse (DSC)

Evolution de la conductivité en fonction de la fréquence

En général la conductivité suit la loi UDR : (Universal Dielctric Response) (Jonscher, Nature, 1977) $\sigma(f) = \sigma_0 + A f^s$ avec 0 < s < 1

La valeur du plateau (BF) donne la conductivité statique : σ_0

Diagramme de Nyquist (Cole-Cole)

Malki et al., Fréjus, 2015

Malki et al., Fréjus, 2015

8

Effet de la température

Pour T<T_g : la conductivité suit une loi d'Arrhenius, caractéristique d'un phénomène de transport thermiquement activé

$$\sigma(T) = \frac{\sigma_0}{T} \exp(\frac{-E}{kT})$$

où : E : énergie d'activation σ_0 : facteur pré-exponentiel

> E = 1.38 eV σ_0 = 3.5 (Ω⁻¹.cm⁻¹.K)

Verre	x = 42	x = 44	x = 47	x = 50	x = 53
log(σ₀) (Ω ⁻¹ .cm ⁻¹ .K)	3.8	3.3	3.3	3.5	3.8
E (eV)	1.51	1.41	1.40	1.38	1.41

Changement de régime de conductivité vers x = 45%.

Pour x > 45%, les cations Ca²⁺, migrent plus facilement dans le réseau

Percolation de conductivité en accord avec la théorie des contraintes

(M. Micoulaut, M. Malki, P. Simon, O. Canizarès, Philo. Mag., 2005)

Alcalins vs alcalino-terreux $20^{0}, 60^{0}, 72^{0}, 80^{0}, 60^{0}, T(K), 1004)$

Mécanisme de conduction

Modèle de Souquet et al.(1998) : cas des cations monovalents

Effet d'alcalins mixtes

Effet d'alcalins mixtes (EAM) : évolution **non linéaire** de certaines propriétés physiques des verres lors de la substitution d'un alcalin par un alcalin de nature différente. La propriété la plus impactée étant la **conductivité électrique**.

Exemple : verres : xK2O-(30-x)Na2O-30P2O5-40ZnO (Gao et al., JNCS, 2010)

L'effet est maximum vers 50% et s'attenue avec la température. En fait, il existe l'effet d'alcalino-terreux mixtes (plus modéré en général), l'effet d'alcalins-alcalino-terreux mixtes,...

Dénomination générale : effet de cations (ou de modificateurs) mixtes

Il existe de nombreux modèles pour tenter d'expliquer l'EAM, mais ¹⁴ aucun ne fait l'unanimité.

Exemples d'autres propriétés affectées par l'EAM

Exemples de propriétés peu ou pas affectées par l'EAM

Conductivité électrique à l'état fondu

<u>Literature</u> : nombreuses études dans le verre à l'état solide alors que dans l'état fondu les données sont rares et souvent contradictoires

<u>Quelques applications (état fondu) :</u>

- Vitrification de déchets nucléaires en utilisant le procédé du creuset froid ou auto-creuset (induction)
- Modélisation des fours verriers pour optimiser le procédé fusion
- Estimation d'autres données de transport (diffsion, viscosité) en à partir de la donnée de conductivité
- Informations sur les phénomènes de dévitrification, cristallisation, redox,...

Et au dessus de Tg?

Exemple : verre CaO-SiO₂ (CaSiO₃)

 T<T_g: la conductivité σ suit une loi d'Arrhenius, caractéristique d'un phénomène de transport thermiquement activé

$$\sigma T = \sigma_0 \exp\left(-\frac{E}{RT}\right)$$

E : énergie d'activation (~ 1,4 eV) σ_0 : facteur pré-exponentiel (~ 3,10³ S.cm⁻¹)

En dessous de Tg, σ est assurée par des sauts cationiques (Ca²⁺) dans un réseau vitreux "figé"

T>T_g la conductivité augmente plus vite qu'une loi d'Arrhenius
 Changement de régime de la conductivité

Dispositif expérimental (état fondu)

f: facteur géométrique de l'échantillon (cm⁻¹)

- état solide : $f = \frac{e}{s}$, e : épaisseur et S : surface électrode

- état fondu : f déterminé par calibration (solution KCI)

La méthode 4 électrodes :

- réduit fortement la polarisation d'électrodes
- 19 élimine la résistance parasite des fils de mesure

C. Simonnet, J. Phalippou, M. Malki, A. Grandjean, RSI, 2003

2 vs 4 électrodes

2 électrodes

4 électrodes

Polarisation d'électrodes quasi-nulle (4 électrodes)

F. Gaillard, M. Malki, G. Iacono-Marziano, B. Scaillet, M. Pichavant, Science, 2008,

Malki et al., Fréjus, 2015

Résultats expérimentaux

A. Grandjean, M. Malki, C. Simonnet, D. Manara, B. Penelon, PRB, 2008

Malki et al., Fréjus, 2015

Mécanisme de conduction

Modèle de Souquet et al.(2010)

J.L. Souquet, M. Duclot, M. Levy, SSI, 1998

Comparaison de mobilités cationiques

 μ [Pb²⁺(Tg)] < μ [Ca²⁺(Tg)] << μ [Na⁺(Tg)]

- La mobilité des cations divalents est négligeable devant celle des cations monovalents
- De très faibles quantités d'impuretés alcalines peuvent fausser la conductivité des oxydes binaires d'alcalino-terreux,
 - Utilisation de précurseurs de grande pureté

Estimation du coefficient de diffusion à partir de la conductivité

Equation de Nernst-Einstein :
$$D_{\sigma}(T) = \frac{k_B T}{q^2 n(T)} \cdot \sigma_{dc}(T)$$

Détermination de D à l'aide de la RMN à gradient de champs (CEMHTI)

D : coefficient de diffusion du traceur Ca⁴⁵ à l'aide de la méthode capillaire **Bon accord entre D_a et D(traceurs)**

En réalité : $D = H_r D \sigma$

H_r: Haven Ratio

25

T. Ohkubo, M. Gobet, V. Sarou-Kanian, C. Bessada, M. Nozawa, Y. Iwadate, CPL, 2012

H.Keller, K. Schwerdtfeger, K, Hennessen, Meta. Trans, 1979

Relations entre σ , **D**, η

• Loi de Nernst - Einstein :
$$\sigma \longleftrightarrow D$$

 $\sigma(= nq\mu) = \frac{nq^2}{kT} \cdot \frac{1}{H_r} \cdot D$ où H_r : rapport de Haven

• Loi de Stockes - Einstein : D $\leftrightarrow \eta$ $D = \frac{kT}{6\pi r} \cdot \frac{1}{\eta}$ où r : rayon de la particule diffusante

Application au système SBN

SBNx = SiO₂-B₂O₃-Na₂O x = % mol de Na₂O

27

A. Grandjean, M. Malki, C. Simonnet, D. Manara, B. Penelon, PRB, 2008

28

M. Neyret, M. Lenoir, A. Grandjean, N. Massoni, B. Pénelon, M. Malki, JNCS, 2015

A. Grandjean, M. Malki, C. Simonnet, D. Manara, B. Penelon, PRB, 2008

Conclusion

• La technique en 4 électrodes donne des valeurs précises de conductivité électrique dans l'état fondu • La complémentarité des deux techniques (4 électrodes, pastille) permet e mesurer la conductivité dans une large gamme de température [77 K- 2000 K] • connaissance de sigma : - estimation du coefficient D des espèces chargées - cristallisation, dévitrification La mobilité des cation alcalino-terreux est négligeable devant celle des alcalins • Dans l'état fondu, loi de Stockes-Einstein modifiée : $\sigma T \propto$ m augment sensiblement avec la taille de l'alcalin