

Conductivité électrique des verres et fontes d'oxydes, diffusion

<u>M. Malki</u>

CEMHTI, CNRS, UPR 3079, Orléans, France Université d'Orléans, France

Malki et al., Fréjus 2021

Sommaire

Quelques rappels sur la conductivité électrique

□ Mesure de la conductivité des verres à l'état solide et à l'état fondu

- > Impédance complexes
- > Dispositifs expérimentaux
- > Diverses représentations de la réponse électrique
- > Evolution de la conductivité en fonction de la température

□ Conductivité électrique et diffusion

- Relation conductivité diffusivité viscosité
- > Comparaison des diffusivités des alcalins/alcalino-terreux par conductivité électrique
- > Carte de relaxation. Dynamique cations-réseau vitreux
- Relation conductivité structure- diffusivité

Conclusion

Quelques rappels

Conductivité électrique : <u>propriété macroscopique</u> et <u>non sélective</u> caractérisant le transport de charges dans les matériaux

$$\vec{j} = \sigma. \vec{E}$$

$$\sigma: \text{scalaire pour les verres (tenseur en général : cristaux anisotropes)}$$

$$q: charge \, \acute{e}lectrique$$

$$\mu: mobilit\acute{e}$$

$$n: densit\acute{e} \, de \, charges \, mobiles$$

$$\mu = \frac{q}{kT} D_{\sigma}$$

$$D_{\sigma}: \text{coefficient de diffusion}$$

Relation de Nernst-Einstein

$$\boldsymbol{D}_{\boldsymbol{\sigma}} = \frac{\boldsymbol{k}T}{\boldsymbol{q}^2\boldsymbol{n}}\boldsymbol{\sigma}$$

Conductivité électrique : σ (S/cm), unité SI (S/m) **Résistivité électrique :** ρ = 1/ σ (Ω .cm). (1S = 1 Ω ⁻¹)

- En général, verres d'oxydes conductivité ionique
- Une conductivité électronique peut exister dans les verres :
 - Verres métalliques
 - Verres contenant des éléments avec 2 états d'oxydation (Fe, V, Mo,...)
 - Verres contenant des particules métalliques (Pd, Rh) or RuO₂

Méthodes de mesure de la conductivité électrique

1. Spectroscopie d'impédance complexe

Impédance complexe

$$Z^{*}(\omega) = \frac{U^{*}(\omega,t)}{I^{*}(\omega,t)} = \frac{U_{m}}{I_{m}} \exp(j\theta)$$
ou

$$Z^{*}(\omega) = R(\omega) + jX(\omega)$$

Domaine de linéarité : champ électrique faible (< 1 V/mm)

2. Mesures temporelles (courant continu)

Les mesures en courant continu présentent peu d'intérêt pour les conducteurs purement ioniques, mais elles sont utiles pour les conducteurs électroniques ou mixtes

Ordres de grandeur de la conductivité ionique des verres

Les verres d'oxydes (ioniques) sont essentiellement des isolants électriques

Impédance complexe

 $Z^*(\omega,T) = |Z^*(\omega,T)| \exp j[\theta(\omega,T)] = R(\omega,T) + jX(\omega,T)$

ω : pulsation (rad. s^{-1}) = 2πf où f : fréquence (Hz)

Impédancemétrie -Verre (solide)

Impédance complexe
$$Z^*(T, \omega) = \frac{U^*}{I^*} = R(T, \omega) + jX(T, \omega)$$
Acquisition des données (ω, T, R, X)

Diverses représentations de la réponse électrique complexe

2. Diagramme de Nyquist (Cole-Cole) $: -X(\omega, T) = f(R(\omega, T))$ <u>Rappel</u>: $Z^*(\omega, T) = R(\omega, T) + jX(\omega, T)$

- Le module électrique « écrase » les phénomènes de polarisation d'électrode

- La partie imaginaire de $M^*(\omega, T)$ permet de définir un temps de relaxation électrique $\tau_{\sigma} = \frac{1}{2\pi f_c}$

5. Permittivité complexe $\varepsilon^*(\omega, T) = \frac{1}{M^*(\omega, T)} = \frac{\sigma^*(\omega, T)}{j\omega\varepsilon_0}$

Effet de la température

Verre : $35SiO_2 - 35B_2O_3 - 30Na_2O \pmod{8}$

Quelle loi d'Arrhenius? $\sigma(T) = \frac{\sigma_0}{T} \exp(\frac{-E}{kT})$ ou $\sigma(T) = \sigma'_0 \exp(\frac{-E'}{kT})$ E, E' : énergie d'activation σ_0 , σ'_0 : facteur pré-exponentiel

Mécanismes de conduction

(Voir cours d'Annie Pradel)

Modèle de Souquet et al., SSI, 1998 : cas des cations monovalents

Conductivité électrique à l'état fondu

<u>Literature</u> : nombreuses études dans le verre à l'état solide alors que dans l'état fondu les données sont plutôt rares

Quelques applications (état fondu) :

- Vitrification de déchets nucléaires en utilisant le procédé du creuset froid ou auto-creuset (induction)
- Modélisation des fours verriers électriques pour optimiser le procédé fusion

- Estimation d'autres données de transport (<u>diffusion</u>) à partir de la donnée de conductivité

- Informations sur les phénomènes de dévitrification, cristallisation, redox,...

Une méthode absolue (état fondu)

Schiefelbein et al., RSI, 1989

$$\kappa = \frac{\ln(b/a)}{2\pi} \frac{d[1/(Z_{\text{liq}}^{\text{real}})^*]}{d\xi} \,.$$

K: conductivitéb = 3 mm: Ø électrode intérieurea = 18 mm: Ø électrode extérieur ξ ξ ξ ξ

Plusieurs profondeurs d'immersions à température constante pour obtenir un point de mesure

Inconvénients :

- temps de mesure très long : tendance à la cristallisation
- méthode inutilisable lorsque la viscosité devient grande (près de Tg)

Malki et al., Fréjus 2021

2 vs 4 électrodes

2 électrodes

4 électrodes

Polarisation d'électrode quasi-nulle (4 électrodes)

F. Gaillard et al., Science, 2008

Thèse Hua Fan, université d'Orléans (2017)

10000

60

Malki et al., Fréjus 2021

10

Cristallisation

Malki et al., Fréjus 2021

Quelques exemples :

Conductivité-diffusion-viscosité

Diffusion of ²²Na and ⁴⁵Ca and ionic conduction in two standard soda-lime glasses[☆]

E.M. Tanguep Njiokep*, H. Mehrer

Solid State Ionics 177 (2006) 2839-2844

Glasses composition

Chemical composition in mol%, mass density, ρ , and number density, N, of sodium of standard glasses I and II

	SiO ₂	Na ₂ O	CaO	MgO	Al_2O_3	SO ₃	K ₂ O	TiO ₂	Fe ₂ O ₃	$\rho (\text{g cm}^{-3})$	$N (at. m^{-3})$
Standard glass I	71.80	14.52	7.22	6.24	0.73	0.33	0.22	0.1	0.07	2.486	7.2×10^{27}
Standard glass II	71.37	13.19	10.63	5.01	0.06	0.2		0.02	0.008	2.507	6.96×10^{27}

2^{nde} loi de Fick
$$c(x,t) = \frac{M}{(\pi Dt)^{1/2}} \exp\left(-\frac{x^2}{4Dt}\right)$$

35 min < t < 91 j 473 K < T < 783 K Tg ~ 800 K

Tracer diffusivity

Fig. 2. Diffusion profiles of ²²Na in standard glass II (grinder technique)

Fig. 3. Diffusion profiles of ⁴⁵Ca in standard glass II (sputter technique).

Electrical conductivity

Comparizon: tracer diffusivity - electrical conductivity

$D(T) = D^0 \exp\left(-\frac{\Delta H}{k_{\rm B}T}\right)$

Table 2

Arrhenius parameters of 45 Ca and 22 Na diffusion and of the conductivity diffusion in standard glasses I and II

φ.		$D^0 (m^2 s^{-1})$	ΔH (kJ mol ⁻¹)	ΔH (eV at. ⁻¹)
Standard	<i>D</i> *(Ca)	1.35×10^{-4}	217±6	2.25 ± 0.06
glass I	<i>D</i> *(Na)	5.36×10^{-7}	91 ± 2	0.94 ± 0.02
	D_{σ}	9.6×10^{-7}	90.0 ± 0.2	0.934 ± 0.002
Standard	<i>D</i> *(Ca)	4.0×10^{-5}	215 ± 8	2.23 ± 0.08
glass II	<i>D</i> *(Na)	1.24×10^{-6}	99±3	1.03 ± 0.02
(rite))	D_{σ}	1.7×10^{-6}	94.8 ± 0.4	0.984 ± 0.004

Fig. 6. Arrhenius diagram of 22 Na and 45 Ca tracer diffusion and of the conductivity diffusion coefficients for standard glass II.

 $1kJ/mol \approx 1,04.10^{-2} eV$

Fig. 7. Haven ratio as function of 1/T for both glasses.

En général $0 < H_R \leq 1$

 H_R quasi-constant en dessous de Tg

Mécanisme de conduction indépendant de la température dans la gamme étudiée $H_R(I) > H_R(II)$ car le verre I contient plus de Na₂O En règle générale H_{P} diminue, puis se stabilise avec

la teneur en en oxyde d'alcalin (Kelly et al., JNCS, 1980)

Fig. 4. Correlation factor ff) versus alkali oxide concentration (mol%) for Me20-SiO 2 glasses, where Me is alkali. For Na20-SiO2 the symbols (all with dots) refer to the following: open circles, Doremus [12] (data of Johnson [13] and Sedden et al. [14]); open squares, Lim and Day [3] T = 300- 430°C; open triangles, Haven and Verkerk [15] T= 352- 473°C; open diamonds, present work (data of Evstrop'ev and Pavlovskii [11]) T = 300°C; crosses, Engel and Tomozawa [16] T= 300°C; small open squares, Lim and Day [6] T= 375 - 500°C (these glasses contained small amounts of A1203 or B203); inverted open triangles present work (data of Evstrop'ev and Ivanov [10]) $T = 415^{\circ}C$; open circles with horizontal bars, Doremus [17] T= 337°C. For K20-SiO2 the open hexagons refer to the present work (data of Evstrop'ev and Pavlovskii [11]) T = 300°C; and for Rb20-SiO 2 the crossed open circles refer to the present work (data of Evstrop'ey, and us 2021) Pavlovskii [11]) T = 300°C.

Viscosity, verre l

Gamme de température : 520 – 1500 °C

Coefficient de diffusion D_{η} déduit de la relation de Stokes-Einstein :

$$D_{\eta} = \frac{\kappa T}{6\pi r \eta}$$
 avec r : rayon de Si (r = 0,42.10⁻¹⁰ m)

<u>Remarque</u> : si formule d'Eyring : $D_{\eta}^{E} = \frac{kT}{\lambda \eta}$ avec $\lambda = 2,8.10^{10}$ m, alors $D_{\eta}^{E} = 2,83.D_{\eta}$

Fig. 5. Arrhenius diagram of ²²Na and ⁴⁵Ca tracer diffusion, of the conductivity diffusion coefficients, and of the viscosity diffusion coefficients for standard glass I.

$$\mathsf{D}_{\mathsf{Na}} >> \mathsf{D}_{\mathsf{Ca}}^{2+} >> \mathsf{D}_{\mathsf{Si}}$$

Mais l'écart diminue avec T

Comparaison des diffusivités alcalinsalcalino-terreux par conductivité électrique

Etat solide

Malki et al., JNCS, 2003

La mobilité des alcalino-terreux est négligeable devant celle des alcalins dans les verres

Etat fondu

Carte de relaxation Dynamique cations-réseau vitreux

Gruener et al., PRB, 2001

TABLE I. Nominal composition (% mol) and glass transition temperatures of the samples investigated.

	Ca36.27	Ca44.12
SiO ₂	36.2	44.0
Al_2O_3	27.1	12.5
CaO	36.7	43.5
$T_g(\mathbf{K})$	1123	1083

FIG. 2. Viscosity against reciprocal temperature for Ca44.12 and Ca36.27 liquids. Data are from Table III near the glass transition range and from Ref. 11 at superliquids temperatures.

Temps de relaxation

 $au_{\eta} = rac{\eta}{G_{\infty}}$

 $\omega_{
m c}$: puisation co G_{∞} : module de cis*a*illement à

fréquence infini (~10¹⁰ Pa pour les silicates (Dingwell, 1990))

FIG. 4. Real part of the conductivity against the frequency at various temperatures for the Ca36.27 glass sample: experimental data and fitting by UDR law (solid lines).

$$au_{\sigma} = rac{1}{\omega_c}$$

RMN de ²⁷Al

<u>Echantillon</u> : bille de 3,5 mm, en lévitation aérodynamique, chauffée par laser CO₂

Durée d'un scan : 20 ms

FIG. 5. Variation with temperature of the ²⁷Al static NMR spectra of Ca36.27 liquid on cooling from 2000 K.

> Temps de relaxation τ

$$v_{RMN} = v_{1/2} \frac{125}{12\pi C_{Qn}^2}$$

 $v_{1/2}$: largeur à mi-hauteur de la raie centrale C_{Qn} : constante de couplage quadripolaire

Carte de relaxation

Leire del Campo Hua Fan Arthur Cachot Valérie Montouillout Philippe Melin Lionel Cosson Aydar Rakhmatullin Sandra Ory Séverine Brassamin

Merci pour votre attention