

Ecole thématique « Verre et Diffusion »

Cours Mardi 05 Octobre 2021

Conductivité ionique dans les verres (T < T_g)

Annie PRADEL – ICGM Université de Montpellier

Les principaux modèles de conductivité

Etude couplée diffusion de traceurs radioactifs et conductivité

- Technique expérimentale de la mesure du coefficient de diffusion d'un traceur
- Etude d'un cas : verres thiogermanates d'argent

Effet d'alcalins mixtes, effet de cations mixtes (compétition entre modificateurs)

Effet de compétition entre formateurs (borophosphates de lithium, thio-germanosilicates de lithium)

Verre conducteur ionique

Li₂O

Formateur de réseau + modificateur de réseau

SiO₂

Dépolymérisation du réseau création d'oxygène non pontant

Li⁺ au voisinage de ces ions non pontants

 $\sigma = f(x)$

Sous l'effet d'un champ électrique, déplacement des charges Li⁺

 $\sigma = n Ze \mu$ $\sigma = \sigma_0 / T \exp(-E_{\sigma} / kT)$

Loi d'Arrhenius

Large domaine de compositions

Verres $xLi_2O-(1-x)SiO_2$ $0 \le x \le 0.66$ (mole)

 $\log \sigma$

Modèle d'Anderson-Stuart

 $\sigma = \sigma_0 / T \exp(-E_{\sigma} / kT)$

 σ_0^{-} ct (log σ_0^{-} 3 pour les verres oxydes) E_{σ} diminue quand x augmente

 $\mathbf{E}_{\sigma} = \mathbf{E}_{b} + \Delta \mathbf{E}_{s}$

 $\sigma = f(x)$

Contribution d'origine électrostatique Contribution due à la déformation du réseau

$\Delta E_s = 4\pi Gr_D(r-r_D)2$

r rayon ionique du cation r_D rayon de l'interstice que traverse le cation G module de cisaillement (varie peu avec x)

$E_{b} = 1/\gamma [zz'e^{2}/(r+r') - zz'e^{2}/\lambda/2]$

- γ paramètre de covalence (augmente faiblement avec x)
- λ distance entre deux sites (diminue quand x augmente)

O. Anderson, D. Stuart, J. Amer. Ceram. Soc., 1954, 37, 573

Modèle des électrolytes faibles (phénoménologique)

Modèles de conductivité

Modèles Statiques

Modèle Anderson-Stuart (électrolytes forts)

Modèle des électrolytes faibles

Faible nombre de porteurs mobiles à chaque instant

Mobilité constante

S. Martin and A. Angell, JNCS, 1986, 83, 185

Aspect prédictif des modèles

Polarisabilité du réseau (I)

Rôle du chalcogène

S remplacé par Se, σ similaires

Aspect prédictif des modèles

Polarisabilité du réseau (II)

Rôle d'un « sel dopant »

Aspect prédictif des modèles

Polarisabilité du réseau (II)

Rôle d'un « sel dopant »

Modèles de conductivité

Aspect prédictif des modèles

Nature du cation mobile

Modèles Dynamiques

Dynamic structure model (Bunde, Ingram)**

*K. Funke, Prog. Solid State Chem., 1993, 22, 111; **P. Maass, A. Bunde, M. Ingram, Phys. Rev. Let., 1992, 68, 3064

Mesure de la diffusion de traceurs radioactifs

Diffusion sous champ électrique

Mesure de conductivité σ -> Coefficient de diffusion de conductivité D_{σ}

relation de Nernst Einstein

 $D_{\sigma} = kT\sigma/n(Ze)^2$

 σ est la conductivité ionique, n la concentration en charges mobiles, Ze charge électrique de l'ion mobile, k et T constante de Bolztmann et température en K

Méthode des traceurs radioactifs

Mesure des profils de diffusion d'un traceur M* -> Coefficient de diffusion du traceur, D*

Déplacement de charges électriques versus déplacement d'isotopes radioactifs

Les coefficients D_{σ} et D^* peuvent être similaires ou différents selon les mécanismes de diffusion mis en jeu.

Rapport de Haven $H_R = D^* / D_{\sigma}$

Mesure de la diffusion de traceurs radioactifs

Largement utilisée dans le passé* ; plus difficile à mettre en œuvre désormais Nécessité d'avoir des **éléments radioactifs** Problème de manipulation, de sécurité

Peu de laboratoires continuent à réaliser ce type d'expériences

Labo de Physique Nucléaire de Saint Petersbourg (Russie)

Méthode des traceurs radioactifs

Principe de la mesure/Technique expérimentale

Cas d'un verre conducteur par ions Ag⁺

Traceur ^{110m}AgIrradiation d'une cible d'argent dans un réacteur nucléaireDissolution de la cible dans une solution d'acide nitrique

Mesure de l'activité résiduelle A(x,T) en fonction de l'épaisseur x Compteur à scintillation -> activité γ

Thèse Boidin ULCO 2013

Méthode des traceurs radioactifs

Principe de la mesure/Technique expérimentale

D(^{108m}Ag) = 1.53 10⁻⁸ cm²s⁻¹ à T = 120°C

Coefficient de diffusion de ^{110m}Ag

Energie d'activation de diffusion

D₀ varie de 2 cm² s⁻¹ à 10⁻³ cm² s⁻¹

-4

-6

-8

-10

-12

-14

-16

log a (S/cm)

293K < T < 513K

Mesure conductivité en continu ($\sigma < 10^{-8}$ Scm⁻¹) Mesure par impédance complexe ($\sigma \ge 10^{-8}$ Scm⁻¹)

Rapport de Haven

Mesure de conductivité $\sigma \rightarrow Coefficient de diffusion de conductivité <math>D_{\sigma} = kT\sigma/n(Ze)^2$

Mesure de diffusion du traceur ^{110m}Ag -> Coefficient de diffusion de ^{110m}Ag

Résultats similaires obtenus pour des verres oxydes binaires ou multicomposants*

*G.H. Frischat Ionic diffusion in oxide glasses (TransTech, Aedermannsdorf), 1975

Premières interprétations

Réseau cristallisé		Verres
lacunes	$f = H_r = 1 - 2/z_n$ avec z_n nombre de proches voisins	0.67
Intersticiels indirects	f= H _r = 2(1 – 1/z _i)(d/d _i) avec z _i nombre de sites intersticiels voisins; d _i distances entre ces sites	0.33
Intersticiels directs	f= H _r = 1	1

Verre: processus de diffusion multiple

Dans un réseau désordonné, qu'est ce qu'un site? Une lacune? Une position intersticielle?

Interaction entre le cation mobile et les sites porteurs d'oxygène non pontants voisins(NBO) processus de diffusion unique

NBO augmente quand [M⁺] augmente; Hr diminue

Etude des verres yAg₂S-60GeS-(40-y)GeS₂

Teneur en Ag faible (≤ 5 at%)

Loi en puissance $\sigma(\mathbf{x}) = \mathbf{C}\mathbf{x}^{t} \text{ avec } \mathbf{t}(\mathbf{T})$ $\mathbf{D}(\mathbf{x}) = \mathbf{C'}\mathbf{x}^{(t-1)}$ $D_{\sigma} = kT\sigma/n(Ze)^{2}$

Energie d'activation

E = B + Clnx

t dépend de la dimensionnalité du réseau (verre thioarseniate)

En accord avec modèle de percolation

Volume permis très élevé

XPS

Redistribution des charges bien au-delà de la première sphère de Ag

Teneur en Ag élevée (> 10 at%)

Augmentation exponentielle de la conductivité avec x $\sigma(x) = \sigma(0) \exp(ax)$

Diminution de $\mathrm{E}_{\mathrm{\sigma}}$

Diffraction des neutrons

 $N_{Ag} \simeq 3$ Ag - S = 2.6Å

Pyramide trigonale AgS₃ + Corrélation Ag – Ag = 3Å

Chemin de conduction via les pyramides AgS3

Etude des verres yAg₂S-60GeS-(40-y)GeS₂

0.008 < x < 0.1 at % Ag

0.1 < x < 10 at % Ag

x > 10 at % Ag

 $H_{R} \simeq 0.3-0.4$

H_R~1

H_R diminue de 0.85 à 0.6

(ii) $\mathbf{X} > \mathbf{X}_{e}$

(III) x >> x₆

Sauts indépendants

chemins de percolation

Percolation-controlled domain

Réseau percolant uniforme

Modifier-controlled domain

Etude des verres

Teneur croissante en modificateur

Etude des verres

Ag_x (Ge_{0.25}Se_{0.75})_{100-x} % at. Ag compris entre 0 et 30

M. A. Ureña, A. A Piarristeguy. M. Fontana, B. Arcondo; SSI 176 (2005) 505. A. Piarristeguy, J. M. Conde Garrido, M. A. Ureña, M. Fontana, B. Arcondo; J. Non-Cryst.Sol. 353 (2007) 3314.

Etude des verres

Ag_x (Ge_{0.25}Se_{0.75})_{100-x}

% at. Ag compris entre 0 et 305

Hétérogénéités chimiques

MEB + EDX

Microscopie en champ proche (EFM)

M. Kawasakiet al, J. Non-Cryst. Solids 123 (1999) 259; M. A. Ureña et al, SSI 176 (2005) 505; A. Piarristeguy et al.; J. Non-Cryst.Sol. 353 (2007) 3314.

yAg₂S-60GeS-(40-y)GeS₂

100

Hétérogénéités dans les verres

$Ag_{x} (Ge_{0.25}Se_{0.75})_{100-x}$

1 phase1 phaseriche en Agpauvre en Ag

Relation "structure/ conductivité"

Effet de cations mixtes

Effet de formateurs mixtes

Relation "structure/ conductivité"

Effet de cations mixtes

Effet de formateurs mixtes

Effet de cations mixtes Système Rb₂S-Ag₂S-GeS₂

0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ 0 < x <1

Teneur constante en modificateur

substitution d'un modificateur par un autre

Effet de cations mixtes Système Rb₂S-Ag₂S-GeS₂

Teneur constante en modificateur

substitution d'un modificateur par un autre $R_i Rb = 152pm$ $R_i Ag = 115pm$

Temperature de transition vitreuse

Conductivité et Energie d'activation

Variation non linéaire des propriétés

Rau et al., Phys. Rev. B 63, 184204

0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ 0 < x <1

Diffusion des rayons X aux petits angles (SAXS)

Pas de séparation de phase à l'échelle mésoscopique (10-1000 Å)

0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ 0 < x <1

Raman (1064 nm) Etude structurale de la matrice vitreuse

Evolution non-monotone – écart très net pour x = 0.2 et 0.4 Evidence d'un ré-arrangement structural lors du remplacement de Rb_2S par Ag_2S .

iCGM Effet de cations mixtes

0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ 0 < x <1

Raman

X = 0.4

- Combinations linéaires des spectres des deux compositions limites (x=0 and 1)
 - Spectre expérimental

La matrice thiogermanate se réorganise et devient plus homogène (Q²)

Chaînes de Td partageant deux sommets et porteurs de deux S⁻

Maximisation de la distance entre cations dissymétriques

Å

Etude structurale

0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ 0 < x <1

Etude de l'environnement des cations

 0.14 ± 0.01

 3.37 ± 0.01

 $\Delta \sigma$ (A)

R (Å)

						-
	x	0.2	0.4	0.6	1	-
Ν	Ag-S	2.7±0.2	2.8 ± 0.1	2.8±0.2	2.8 ± 0.1	-
Δc	τ(Å)	0.07 ± 0.01	0.07 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	
R	(Å)	2.50 ± 0.01	2.51 ± 0.01	2.50 ± 0.01	2.51 ± 0.01	
		Les catio	ons conse	rvent leu	r enviro	nnement
	Nombre de coordination			N _{Ag} $\Delta \sigma$ =	~ 2.8 0.08Å	N _{Rb} ~ 4.2 Δσ = 0.14Å
	Longueur de liaison			Ag-S ~ 3	2.50 Å	Rb-S ~ 3.37
_						
	x	0	0.2	0.4	0.6	
1	VPLS	4.2±0.2	4.2 ± 0.2	4.1±0.2	4.3 ± 0.2	2

 0.14 ± 0.01

 3.37 ± 0.01

 0.14 ± 0.01

 3.37 ± 0.01

 0.13 ± 0.01

 3.38 ± 0.01

> 0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ 0 < x <1

Teneur constante en modificateur

substitution d'un modificateur par un autre

Conductivité et Energie d'activation

En accord avec les modèles de structure dynamique

Effet de cations mixtes

Effet « universel »

Effet d'alcalins mixtes

$0.5[(1-x)Li_2S-xNa_2S]-0.5SiS_2 \ 0 < x < 1$

Conductivité et Energie d'activation

Effet « universel »

Verres oxydes

Travaux pionniers de Greaves*

EXAFS $0.5[(1-x)K_2O-xCs_2O]-2SiO_2$ 0 < x < 1

Système homologue à 0.5[(1-x)Rb₂S-xAg₂S]-0.5GeS₂ **

0.2[(1-x)Rb₂O-xK₂O]-0.8GeO₂ 0 < x <1

0.2[(1-x)Rb₂O-xAg₂O]-0.8GeO₂ 0 < x <1 N_{Rb} ≈ 6 N_{Ag} ≈ 2

*G.N. Greaves, JNCS, 71, 1985, 203; G.N. Greaves, Philos. Mag. B, 60, 1989, 2793

**C. Huang et al., JNCS, 180, 1994, 40

C. Huang et al., JNCS, 255, 1999, 103

Relation "structure/ conductivité"

Effet de cation mixtes

Effet de formateurs mixtes

Effet de formateurs mixtes Système Li₂O-P₂O₅-B₂O₃

$\sim 0.45 \text{Li}_2 \text{O} - 0.55 [\text{xB}_2 \text{O}_3 - (1 - \text{x}) \text{P}_2 \text{O}_5] 0 < x < 1$

Teneur constante en modificateur

substitution d'un formateur par un autre

Effet de formateurs mixtes Système Li₂O-P₂O₅-B₂O₃

0.45Li₂O-0.55[xB₂O₃-(1-x) P₂O₅] 0 < x <1</p>

Teneur constante en modificateur

substitution d'un formateur par un autre

Temperature de transition vitreuse

Conductivité et Energie d'activation

Variation non linéaire des propriétés

BO₄⁻ Li⁺ compensateur de charge

2 types d'ions Li⁺

P(B) – O⁻ Li⁺ proche d'un oxygène non pontant

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

RMN

Effet de formateurs mixtes

CHEMISTRY: MOLECULES TO MATERIALS

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

Effet de formateurs mixtes

CHEMISTRY: MOLECULES TO MATERIALS

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

Multitude de sites pour le phosphore

 \mathbf{Q}^{n}_{0}

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$ RMN ¹¹B DQ-SQ @ 18.8 T

Séquence basée sur le couplage dipolaire: Donne la proximité spatiale de différents sites d'un même noyau

Signal sur la diagonale -> auto-correlation Signal hors diagonale -> correlation entre deux sites différents

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

Effet de formateurs mixtes CHEMISTRY: MOLECULES TO MATERIALS

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

¹¹B Chemical Shift / ppm

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

L'introduction de P₂O₅ dans le verre borate favorise la présence de B en environnement tétraédrique au détriment du B en environnement 3

Etude structurale $0.45Li_2O-0.55[xB_2O_3-(1-x)P_2O_5] 0 < x < 1$

[BO3]/[BO4] \geq 1 σ décroit

BO3 défavorable à la mobilité

Bloque les chemins de conduction

Li⁺ compensateurs de charges plus mobiles que Li⁺ près d'un oxygène non pontant

Effet non-universel, très dépendant du système étudié

0.3 Li₂S 0.7[(1-x)SiS₂ xGeS₂]

0.5 Li₂S 0.5[(1-x)SiS₂ xGeS₂]

Conductivité et Energie d'activation

Saut de σ et d'énergie d'activation

Evolution continue de σ et énergie d'activation

System Li₂S- [(1-x)SiS₂-xGeS₂]

0.3 Li₂S 0.7[(1-x)SiS₂ xGeS₂]

0.5 Li₂S 0.5[(1-x)SiS₂ xGeS₂]

Ordre à moyenne distance différent

Les 2 formateurs ne peuvent se mélanger

Séparation de phase complète (Tenhover 1983)

xLi₂S- (1-x)SiS₂

Raman

x=0.3 MRO différent

Séparation de phase

Nodules GeS₂ piégés dans une matrice ~ Li₂SiS₃ (Etude Raman)

x=0.5 MRO similaire Solution solide

Conclusion

Modèles « historiques » au caractère prédictif

Synthèses des premiers verres chalcogénures conducteurs par alcalins

Modèles dynamiques

Relaxation de la matrice au passage de l'ion Existence de sites favorables au déplacement des ions

Etude de la diffusion de traceurs radioactifs en complément de la conductivité

Mise en évidence de trois mécanismes de conduction selon la teneur en ions mobiles

Effet de compétition entre modificateurs (effet d'alcalins mixtes, effet de cations mixtes) Universel; défavorable à la mobilité des ions

Effet de compétition entre formateurs (borophosphates de lithium, thio-germanosilicates de lithium)

À étudier au cas par cas