Conductivité thermique: Mesure de propriétés thermiques de solides et de liquides silicatés à hautes températures

Benjamin Rémy, Vincent Schick, Johann Meulemanns

Saint Gobain Research / LEMTA / UL / CNRS

Laboratoire commun CANOPEE

USTV 2023

13/4/2023

- Mesure des propriétés thermiques des verres : difficultés expérimentales
 - Matériaux semi transparents \rightarrow chaleur = rayonnement + conduction
 - Rhéologie (au de la de T_f) \rightarrow convection
 - Hautes températures
 - Environnement
 - Contraintes expérimentales matérielles

Exemple de spectre d'absorption d'un verre silico-sodo-calcique à température ambiante

- Mesure des propriétés thermiques des verres : difficultés expérimentales
- Propriétés thermiques recherchées
 - Conductivité thermique « phonique »
 - Propriété thermique intrinsèque au matériau → conduction par le réseau atomique
 - Verre et liquide sont des milieux dit « participants » en terme de rayonnement, les méthodes de mesure classique ne permettent que d'estimer une conductivité thermique apparente liés à la conduction et au rayonnement
 - Capacité calorifique par Calorimétrie (DSC HT)
 - Diffusivité thermique « phonique »

2. Estimation de la diffusivité thermique par méthode « flash »

3. Diffusivité thermique des verres à hautes températures

4. Diffusivité thermique des liquides à hautes températures

5. Conclusions et perspectives

Estimation de la diffusivité thermique par méthode « flash »

13/4/2023

Principe de la méthode Dispositif de mesure Exploitation des thermogrammes Modélisation des phénomènes de conduction

6

Principe de la méthode

Principe de la méthode Dispositif de mesure Exploitation des thermogrammes Modélisation des phénomènes de conduction

Dispositif de mesure

Principe de la méthode Dispositif de mesure Exploitation des thermogrammes Modélisation des phénomènes de conduction

Dispositif de mesure

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Principe de la méthode Dispositif de mesure Exploitation des thermogrammes Modélisation des phénomènes de conduction

Exploitation des thermogrammes

- Température en face arrière normalisée en fonction du temps
- Modélisation des phénomènes de transfert de la chaleur
 - Hypothèse transfert 1D
 - Flux d'excitation court –Dirac (t_i<300*t_{max}) –Créneau (<t_{max}/2)

• $h_0 = h_e = h_r$

Principe de la méthode Dispositif de mesure Exploitation des thermogrammes Modélisation des phénomènes de conduction

Exploitation des thermogrammes

 Estimation de paramètres en minimisant l'écart quadratique moyen Modèle - Expérience

13 avril 2023

Principe de la méthode Dispositif de mesure Exploitation des thermogrammes Modélisation des phénomènes de conduction

Modélisation des phénomènes de conduction

Diffusivité thermique des verres à hautes températures

13/4/2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Couplage conducto-radiatif

- Prise en compte des propriétés thermiques et optiques du matériau. Front Face
- Equation et variable :
 - Equation de la chaleur \rightarrow (T)
 - Equation du transfert radiatif
 →Luminance L (♯σT⁴)
 - Géométrie simplifiée
 - 1D conduction
 - Transfert radiatif en 2D (r, θ)
- Echantillon de quelques millimètres d'épaisseur e isotrope et homogène
 - Paroi et milieu corps gris
 - Echantillon opacifié (or, carbone)

13 avril 2023

Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Couplage conducto-radiatif: épaisseur optique

• La modélisation du transfert de chaleur couplé dépend de l'épaisseur optique

Hyp : milieu gris absorbant émettant non diffusant

*τ*₀=β.e

(avec β le absorption coefficient optique)

- On distingue trois cas de figure :
 - Milieu optiquement épais : <u>τ₀>>1</u>
 - verre "foncé" \rightarrow le verre est un milieu dit "participant"
 - Les transferts conductifs et radiatifs peuvent être modélisés comme des phénomènes diffusifs
 - Modèle "diffusif" → exemple : Rosseland
 - Milieu optiquement mince : <u>τ_θ<<1</u>
 - "Transparent" \rightarrow le verre est un milieu non participant
 - Rayonnement prépondérant
 - Mais rayonnement et conduction sont découplés
 - Milieu intermédiaire <u>τ</u>₀≈1
 - Cas le plus difficile à modéliser
 - Fort couplage: résolution de l'équation du transfert radiatif (E.T.R) et de l'équation de la chaleur)
 - Résolution du problème souvent numérique

13 avril 2023

Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Couplage conducto-radiatif: épaisseur optique

- Milieu optiquement épais : <u><u></u>²>>1</u>
 - Le rayonnement est modélisé comme un phénomène diffusif
 - Introduction de la conductivité radiatif k_r (paramètre extensif)

$$\vec{div}(\vec{q_r}) = -\lambda_r \cdot \vec{grad}(T)$$

$$\lambda_{app} = \lambda_{ph} + \lambda_r \left(\varepsilon, \tau\right)$$

$$\lambda_{ph} \Delta T + div(q_r) = \rho C_p \left(\frac{\partial T}{\partial t}\right)$$

$$\lambda_{app} \Delta T = \rho C_p \left(\frac{\partial T}{\partial t}\right)$$

$$k_r = \frac{4n^2 \sigma T_0^3 e}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1 + \frac{3}{4} \beta e} \quad \text{(pris}$$

$$k_r = \frac{16}{3} n^2 \sigma \frac{T_0^3}{\beta} \quad \text{Me}$$

Modèle de Deissler prise en compte des parois)

Modèle de Rosseland

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Couplage conducto-radiatif: épaisseur optique

- Milieu optiquement mince : $\underline{\tau_{\varrho}} \leq 1$
 - Transfert radiatif découplé de la température dans le milieu
 - Transfert radiatif = résistance
 - Transfert conductif = quadrupole

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Modèle Absorbant/Émettant

■ Milieu intermédiaire : τ₀≈1

Transient Radiation-Conductive Heat transfer Problems: "The Quadrupole Method" Alain Degiovanni Benjamin Remy Stéphane Andre, J. of Thermal Science Vol. 11, No.4

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Modèle Absorbant/Émettant

• Résolution de l'ETR <u>réduite</u> en **milieu gris**

Transformé de Laplace sur la température $\theta(x,p) = \Im \big[T(x,t) - T_{\infty} \big]$

$$q_{r}(z) = 2L^{+}(0)E_{3}(\tau_{0}z) - 2L^{-}(1)E_{3}[\tau_{0}(1-z)] + \frac{\tau_{0}}{2}\int_{0}^{z}(1+\theta(z'))^{4}E_{2}[\tau_{0}(z-z')]dz'$$

avec
$$E_{n}(x) = \int_{0}^{1}\exp(-x/\mu)\mu^{n-2}d\mu - \frac{\tau_{0}}{2}\int_{z}^{1}(1+\theta(z'))^{4}E_{2}[\tau_{0}(z'-z)]dz'$$

Technique de substitution de noyau:

Hypothèse de petites variations de la température :

$$\left[\left(1 + \theta \right)^4 \simeq 1 + 4\theta \right]$$

 $E_2(x) \simeq a \exp(-bz)$ $E_3(x) \simeq \frac{a}{b} \exp(-bz)$

Transient Radiation-Conductive Heat transfer Problems: "The Quadrupole Method" Alain Degiovanni Benjamin Remy Stéphane Andre, J. of Thermal Science Vol. 11, No.4

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Modèle Absorbant/Émettant

• Résolution de l'ETR en milieu gris

Equation différentielle : $\left| \frac{d}{d} \right|$

$$\frac{d^{4}\overline{\theta}}{dz^{4}} - \left(p + 2\frac{\tau^{2}}{N} + \tau^{2}\right)\frac{d^{2}\overline{\theta}}{dz^{2}} + p\tau^{2}\overline{\theta} = 0$$

with:
$$\tau = \frac{2}{3}\tau_0, N = \frac{2}{3}N_0$$

$$N_0 = \frac{k\beta}{4n^2\sigma T^3}$$

Modèle semi- analytique adimensioné Sous la forme d'un quadrupole conducto -radiatif

Solution : $\overline{\theta}(z) = \sum_{i=1}^{4} \alpha_i \exp(\gamma_i z)$

$$\begin{bmatrix} \overline{\theta}(0) \\ \overline{\phi}(0) \end{bmatrix} = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} \overline{\theta}(1) \\ \overline{\phi}(1) \end{bmatrix} \qquad \overline{\theta}(0) \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} \overline{\theta}(1) \\ \overline{\phi}(1) \end{bmatrix} \qquad \overline{\theta}(0)$$

Transient Radiation-Conductive Heat transfer Problems: "The Quadrupole Method" Alain Degiovanni Benjamin Remy Stéphane Andre, J. of Thermal Science Vol. 11, No.4

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Thermogramme échantillons semi-transparents

Simulation Modèle Absorbant et émettant

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Thermogramme échantillons semi-transparents

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Dispositif expérimental

13 avril 2023

Couplage conducto-radiatif

Modèle Absorbant/Émettant

Dispositif expérimental

Résultats expérimentaux

Thermogramme échantillons semi-transparents

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives

Dispositif expérimental

- Dispositif actuel
 - LFA-1000 Linseis (T_{max} 1600°C)
 - Modèle conducto radiatif identique
 - Détecteur identique
 - Source laser 50J

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Résultats expérimentaux

ZnSe à 400°C opacifié au graphite

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Résultats expérimentaux

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Couplage conducto-radiatif Modèle Absorbant/Émettant Thermogramme échantillons semi-transparents Dispositif expérimental Résultats expérimentaux

Résultats expérimentaux

Diffusivité thermique des liquides à hautes températures

13/04/2023

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Dispositif expérimental

- Basé sur la méthode flash: Excitation créneau avec un laser (200 W -10.6 µm pendant quelques secondes) face avant. Mesure sur la face arrière avec une caméra infrarouge CEDIP (InSb 1.5 -5.1µm).
- Mesure de diffusivité thermique de 1000°C à 1500°C

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Dispositif expérimental

 Les échantillons liquides sont placés dans une cellule optimisée en Pt/Rh 10% (40*40*4mm), prenant en compte les aspects spécifiques du matériau (liquide à haute température)

Four tubulaire Carbolite TZF18/600 sous vide ou atmosphère neutre

13 avril 2023

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Cellule de mesure

- Cellule en Platine/Rhodium(10%)
 - Geometrie : Parallélépipédique 40*40*4 mm Paroi de 1 mm
 - Avantages
 - Opaque dans le visible et l'IR
 - Soudage par laser = Bon contact thermique
 - Stable à haute température (\rightarrow 1700°C)
 - A priori neutre via a vis du liquide
 - Matériau documenté (thermocouple type S)
 - Inconvénients
 - Onéreux
 - Faible émissivité et absorption à 10.6µm

Obligation de déposer du titane + oxydation thermique \rightarrow 500 Nm TiO₂

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Cellule de mesure

- Cellule en Platine/Rhodium(10%)
 - Geometrie : Parallélépipédique 40*40*4 mm Paroi de 1 mm
 - Avantages
 - Opaque dans le visible et l'IR
 - Soudage par laser = Bon contact thermique
 - Stable à haute température (\rightarrow 1700°C)
 - A priori neutre via a vis du liquide
 - Matériau documenté (thermocouple type S)
 - Inconvénients
 - Onéreux
 - Faible émissivité et absorption à 10.6µm

Obligation de déposer du titane + oxydation thermique \rightarrow 500 Nm TiO₂

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

- De précédentes études sur la mesures de propriétés thermophysiques sur les liquides au LEMTA → épaisseur paroi optimale à 1 mm
- Géométrie complexe de la cellule (Court circuit thermique par les parois de platine) → modèle numérique 3D
- diffusivité Estimation de la via modèle thermique un numérique 3D Ansys® SOUS couplé avec algorithme un d'optimisation de Levenberg Marguardt (Matlab)

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

- De précédentes études sur la mesures de propriétés thermophysiques sur les liquides au LEMTA -> épaisseur paroi optimale à 1 mm
- Géométrie complexe de la cellule (Court circuit thermique par les parois de platine) → modèle numérique 3D
- Estimation de la diffusivité thermique via un modèle numérique 3D sous Ansys® couplé avec un algorithme d'optimisation de Levenberg Marquardt (Matlab)

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

- Rayleigh dans le liquide au delà de 1200°C pour ΔT=10°C
 - Ra<0.25 << 1000 → peu de perturbations liées à la convection dans la cellule
 - La convection dans le liquide durant la mesure est négligeable

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

- Convection lors d'une estimation par méthode Flash
 - •Influence du fluide (Ra et Pr)
 - $-Ra = 500 (\Delta T=1^{\circ}C)$ pour l'huile
 - $-Ra = 9000 (\Delta T = 10^{\circ}C)$ pour l'eau
 - •Influence du rapport d'allongement de la cellule AI

$$Ra = \frac{g \cdot \beta}{v \cdot \alpha} \cdot \Delta T \cdot L^3 \quad Al = \frac{longueur \, cellule}{\acute{e}paisseur \, fluide}$$

ΔT : difference de température entre face avant et face arrière

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

- Epaisseur optique τ>>1
 - Modèle purement conductif on identifie *a*_{app} sur le thermogramme en face arrière
 - Calcul de la diffusivité phonique et radiative λ_{ph} and λ_r via l' approximation de Rosseland-Deissler :

avec

$$\lambda_{app} = \lambda_r + \lambda_{ph}$$
 Cp connu

Howell, J. R.; Siegel, R. & Menguc, M. P. (2010), *Thermal Radiation Heat Transfer*, CRC Press, Inc., Boca Raton, FL.

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

• Résolution de l'équation de la chaleur

$$div(\lambda_{ph}, \overrightarrow{grad}T) - div(\overrightarrow{q}_{r}) = \rho C_{P}(\frac{\partial T}{\partial t})$$

Avec $\vec{q}_{r}(r, t) = \int_{4\pi} L(r, \Delta) \overrightarrow{\Delta} d\Omega$

Résolution de l'ETR par méthode approché

 $\frac{dL'}{ds} = \frac{\text{Perte par signal}}{-KL'(s) + KL^0(T)}$

- Méthode approchée P.N
 - Approcher l'E.T.R par un système fini d'équations aux moments qui sont obtenues en projetant l'E.T.R par les puissances des cosinus directeurs de la luminance
 - Décomposer la luminance L'(s,ω) sous la forme d'harmoniques sphériques
 - On remplace L'(s,ω) par son développement série dans les différents moments de la luminance.
 - On tronque au premier terme (P1) et on intègre sur l'ange solide

Implémenté sous ANSYS (numérique)

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

- Modèle direct implémenté dans le code commercial ANSYS Fluent v14.5 (UDFs)
- Domaine de calcul : plan de symétrie car tâche laser centrée
- Maillage 307k hexaèdres réguliers
- Pas de temps fixe inférieur à 50 ms
- Schémas numériques du 2nd ordre en espace et en temps

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Modélisation

 $a = 0.5 \ mm^2 \cdot s^{-1}, \ h = 200 \ W \cdot m^{-2} \cdot K^{-1}, \ \tau_0 = 1.0, \ N_{Pl} = 0.25, \ \varepsilon = 0.1$

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Résultats expérimentaux

Essai de validation sur l'eau à température ambiante
 Fluide modèle pour essai à l'ambiante gel eau + carbopol 0.15% masse

13 avril 2023

Vincent Schick

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Résultats expérimentaux

- Echantillons:
 - AS : verre alumino-silicaté à très forte teneur en fer total (environ 5,4 %m) τ>5
 - SC1 : verre silico-sodo-calcique à teneur en fer modérée (environ 0,6 %m) τ≈1

Spectres d'absorption à température ambiante

13 avril 2023

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Résultats expérimentaux

- Echantillon forte épaisseur optique (τ>5)
 - Modèle purement conductif (Rosseland)
 - Bruit de mesure du au refroidissment Stirling du capteur de la camera IR

42

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Résultats expérimentaux

Echantillon AS (forte épaisseur optique)

Exemple d'estimation à 1100 °C

 Résidus plats (i.e., non-signés) et de valeurs quasi nulles

Diffusivité thermique et épaisseur optique estimées

•
$$a = 0.54 \pm 0.02 \text{ mm}^2 \text{ s}^{-1}$$

• $k = 2.01 \pm 0.06 \text{ W m}^{-1} \text{ K}^{-1}$

13 avril 2023

Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Résultats expérimentaux

Echantillon SC (Faible épaisseur optique)

Exemple d'estimation à 1100 °C

 Résidus plats (i.e., non-signés) et de valeurs quasi nulles

Diffusivité thermique et épaisseur optique estimées

• $a(T) = -0,718 + 9,65 \times 10^{-4} T$ • $k(T) = -2,29 + 3,16 \times 10^{-3} T$

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives Dispositif expérimental Cellule de mesure Modélisation Résultats expérimentaux

Résultats expérimentaux

Blazek & Endrys (1983) : méthode du gradient thermique radial Pilon *et al.* (2016) : méthode du gradient thermique linéaire Ohta *et al.* (2001), Shibata *et al.* (2005) : méthode flash « face avant »

Conclusions et perspectives

13/4/2023

Conclusion

- La méthode de caractérisation développée et mise en oeuvre dans nos travaux permet d'estimer la diffusivité thermique *phonique* des verres et liquides silicatés à haute température en s'affranchissant de la connaissance de leurs propriétés radiatives.
- Nécessité de conforter la méthodes avec davantage de caractérisation des verres à iso-composition avec différentes teneurs en fer total
- Perspectives : mesure de conductivité thermique de céramique poreuse à haute température

High-temperature funace [Saint-Gobain website]

Insulating ceramic plates made of alumina (thickness : 100mm) [M. Schumann & L. San-Miguel, 2017]

Fil chaud

13 avril 2023

Estimation de la diffusivité thermique par méthode « flash » Diffusivité thermique des verres à hautes températures Diffusivité thermique des liquides à hautes températures Conclusions et perspectives

Perspectives

Approche stochastique

L. Penazzi / O. Farges / Yves Jannot / B. Remy / V. Schick