

dans les verres : Exemples d'applications

Mathieu Allix

mathieu.allix@cnrs-orleans.fr - Laboratoire CEMHTI - Orléans

11 octobre 2016 - Atelier Thermodynamique des verres - Marseille

Phase separation / crystallization processes are usually not desired in the glass industry

But they can be controlled!

Pyrex[®]

Vycor®

A glass-ceramic material is elaborated by partial and controlled crystallization from glass

René-Antoine Ferchault de Réaumur (1683-1757)

Stanley D. Stookey (1915-2014)

Control of nucleation/growth processes \Rightarrow Wide range of accessible properties

Outline

I. Phase separation in glass: applications

- SiO₂-B₂O₃-Na₂O system (Pyrex[®] / Vycor[®])
- SiO₂-Al₂O₃-CaO system
- GeO₂-ZnO-Ga₂O₃ system

II. Glass-ceramics: crystallization processes

- Homogenous nucleation
- Heterogeneous nucleation
 - Surface crystallization
 - From nucleation agents
 - From phase separated glasses

Conclusion/discussion: which thermodynamic model should be used?

Phase separation below T_{liquidus} has significant influence on the properties - Importance of thermal history

which ensures chemical durability.

 \rightarrow High-SiO₂ skeleton as porous substrate (filters, catalyst supports...) or sintered to dense glass at 1200°C (substitute for pure silica).

Cemht

Martel, J. Phys. Chem. C, 2011

Extension of the range of immiscibility as compared to previous studies \Rightarrow The definition of the limits of the immiscibility domain strongly depends on the probe used to study phase separation!

Glass synthesis: Conventional melt-quenching process (melting @ 1300-1400°C - Pt crucible)

Cemht

✤ (100-x-y) GeO₂ - x ZnO - y Ga₂O₃ glass compositions

10ZnO - 10Ga₂O₃ - 80GeO₂ + 2.5Na₂O glass composition

Nanostructure retained during crystallization

✓ Single heat treatment to crystallize ZnGa₂O₄ exclusively

2 Crystallization of the glass matrix

Chenu, Advanced Optical Materials, 2013

O Melting of the whole material

Nanostructure retained during crystalization

Nanocrystal growth is limited by the size of the phase separation

Outline

I. Phase separation in glass: applications

- SiO₂-B₂O₃-Na₂O system (Pyrex[®] / Vycor[®])
- SiO₂-Al₂O₃-CaO system
- GeO₂-ZnO-Ga₂O₃ system

II. Glass-ceramics: crystallization processes

- Homogenous nucleation
- Heterogeneous nucleation
 - Surface crystallization
 - From nucleation agents
 - From phase separated glasses

Conclusion/discussion: which thermodynamic model should be used?

a)

Free energy G

Gliquid

G_{crysta}

Initial state =

supercooled liquid

homogenous nucleation

- Initiated from local fluctuations

Energy

barrier

V.AGv,

Final state =

stable crystal

 $BaSi_2O_5$, $Li_2B_4O_7$, $Na_2Ca_2Si_3O_9$, $Ba_2TiSi_2O_8$,...

 $W = 4\pi r^2 \gamma + \frac{4\pi}{3} r^3 \Delta G_V + \Delta G_E$

- Only a few examples: Li/Na₂SiO₃, Li₂Si₂O₅, CaSiO₃,

- $T_{gr} (T_g / T_{liquidus}) < 0.58-0.6$
- Low $\Delta density btw G and C$
- Structural similarities at local and medium ranges

b)

W

Embryos

Volume

energy

~r3

Interfacial

energy

heterogeneous nucleation

- Initiated from surfaces / impurities / bubbles...
- $T_{gr} (T_g / T_{liquidus}) > 0.58-0.6$
- High Δ density btw G and C

 $W_{hat} = W_{hom} \times f(\theta)$

- Surface
- Nucleation agents
 - Phase separation

Cormier, chap. 1, "Du verre au cristal", 2012

Supercritical

nuclei

W*

- Presence of tri-coordinated oxygen in both G (NMR) and C !

Heterogeneous nucleation: surface crystallization

Random nucleation + anisotropic growth governed by interface reactions,

heat and mass transfers?

Neoparies[®] (NEG) mm wollastonite (CaSiO₃)

Experiments show that surface crystallization processes are complex...

There are textures preferred during nucleation and growth

Sr₂TiSi₂O₈ Fresnoite

"statistically oriented nucleation in theoretical models is questionable"

Wisniewski, Scientific Report, 2016

Reorientation → "dendritic growth and viscous fingering" Wisniewski, *Scientific Report*, 2013

LAS system (Li₂O-Al₂O₃-SiO₂) + Nucleation agents $\rightarrow \beta$ -quartz

Höland, "Glass-ceramic technology", 2012

First crystallization steps:

Non spherical first nucleus

- metals (Au, Ag, Pt, Pd, etc.)

- non metals (**TiO₂, ZrO₂**, Ta_2O_5 , WO₃, MoO₃, etc.)

Strong volume nucleation which can be controlled

- \Rightarrow Variable crystallization rate (few % > 90 %)
- \Rightarrow Control of the crystal size (< 100nm)
 - Low CTE GC (CTE of the crystalline phase <0)
 - **Transparency** (crystals < 70 nm)
 - Enhanced mechanical properties

Non homogeneity of the annealed glass

Heterogeneous nucleation: nucleation agents

Control of phase separation ; Na₂O-Al₂O₃-SiO₂-LaF₃ system

- Oxide / fluoride phase separation \Rightarrow Fluoride nanocrystals in oxide matrix

- Segregation of dopants (RE) in nanocrystals

Dejneka, JNCS, 1998 ; De Pablos, Internat. Mat. Rev., 2012 ; Wheaton, JNCS, 2007 ; Bhattacharyya, J Cryst Growth, 2009

Self-Limited Growth of Nanocrystals in Glass

SiO₂/Al₂O₃/Na₂O/K₂O/BaF₂ system

Bhattacharyya, Nano Letters, 2009

- \Rightarrow Diffusion barrier enriched in silica
- \Rightarrow No coarsening of nanocrystals

 $55SiO_2 - 5Na_2O - 17ZnO - 23 Ga_2O_3$

✓ 1st steps: "pseudo-spinel" crystallization (not cubic!)

- ✓ Exclusive ZnGa₂O₄ crystallization
- ✓ No matrix crystallization

- ✓ Up to 850°C: crystalline fraction increase (nucleation)
- ✓ Above 850°C: crystal growth by coalescence effect

- ✓ Ga/Zn ratio decreasing from 4 to 2
 → Spinel formation
- ✓ Si/Zn ratio decreases
- ✓ Formation of Ga rich droplets (GaO-SiO₂) ((ZnO)<(Ga₂O₃))

 \Rightarrow Diffusion of Ga and Si oxides to the matrix

------ Continuous Ga and Si oxides diffusion to the matrix ------>

- ✓ Nucleation
- ✓ Zn/Ga≈4

- ✓ Zn/Ga≈3 (pseudo-spinel)
- ✓ Crystal ✓ Coalescence growth
 - ✓ Zn/Ga≈2(ZnGa₂O₄)

Chenu, J. Mater. Chem. C, 2014

Double nucleation mechanism \Rightarrow coexistence of 2 distinct nucleation mechanisms \Rightarrow 2 crystalline phases

Application : glass-ceramics for dental restoration. Improvement of aesthetic and mechanical properties.

Ex: SiO₂-Al₂O₃-CaO-Na₂O-K₂O-P₂O₅-F system \Rightarrow leucite-fluoroapatite glass-ceramic

Volume nucleation (phase separation) \Rightarrow fluoroapatite (needles)

Surface nucleation \Rightarrow Leucite

Höland, Phil. Trans. R. Soc. A, 2003

- Strong crystallization (30-40%)
- Translucency
- Opalescence
- Machinability (CAD/CAM)

 \Rightarrow **Biomimetics** (microstructure similar to a natural tooth)

Outline

I. Phase separation in glass: applications

- SiO₂-B₂O₃-Na₂O system (Pyrex[®] / Vycor[®])
- SiO₂-Al₂O₃-CaO system
- GeO₂-ZnO-Ga₂O₃ system

II. Glass-ceramics: crystallization processes

- Homogenous nucleation
- Heterogeneous nucleation
 - Surface crystallization
 - From nucleation agents
 - From phase separated glasses

Conclusion/discussion: which thermodynamic model should be used?

Phase separation and crystallization mechanisms are complex...

CNT: qualitative description only \Rightarrow New theories are emerging

✤ General Gibbs approach

Two step-model

The composition evolution of the germ is taken into account

Density and structural fluctuations are separated in time

Cormier, chap. 2, "Du verre au cristal", 2012

These models remain non perfect and hardly compatible with complex systems A general theory of nucleation still needs to be established...