Cristallisation et terres rares dans des vitrocéramiques oxyfluorures: exemple du système PbF₂ - PbO GeO₂

M. Mortier, P. Gredin, G. Dantelle, C. Bensalem, L. Xu Laboratoire de Chimie de la Matière Condensée de Paris Ecole Nationale Supérieure de Chimie de Paris - CNRS

G. Patriarche Laboratoire de Photonique et Nanostructure, CNRS Marcoussis - France

> GDR Verres Atelier « terres rares » Nice – 10–11 septembre 2012

Context: materials for IR and visible photonic applications

goal: transparent system with RE-doped fluoride nanocrystals in an oxide glassy phase

rare-earth doped oxyfluoride glass-ceramics 50GeO₂ 40PbO 10PbF₂

question today: how does RE act or not on nucleation of PbF₂?

Glasses doped with various Er³⁺ based compounds

 Er_2O_3 ErOF ErF_3 $ErCl_3$

Effect of Er_2O_3 addition:

Transparent fully amorphous or crystalline opaque material without precipitation of PbF₂ 5

Heat treatment

up to Tg+50°C

Transparent fully amorphous or weakly crystalline opaque material without precipitation of PbF_2 ⁶

Effect of ErF_3 addition

Effect of $ErCl_3$ addition:

Translucent material simultaneous phase separation in the glass phase weak nucleation of PbF₂⁸

Summary of the effect of erbium precursor on DTA curves

the as melted glass is affected by the compound used to introduce erbium

Optical properties of the parent glasses doped by the different erbium compounds

lifetime τ (⁴ I _{13/2}) (ms)	ErF ₃	ErCl ₃	$\mathrm{Er}_2\mathrm{O}_3$	ErOF
measurement on powder	4.04	3.75	3.60	3.48
value in bulk sample	6.87	7.12	5.40	5.57
compared to powder	+70%	+90%	+50%	+60%

Lengthening of the lifetimes and radiative trapping >> Direct effect of non radiative transitions >> local vibration mode frequencies >> various nature of the first neighboring anions

-after melting at 1000°C for 15 minutes: conservation of the initial anionic neighboring of the erbium ions present in the doping compound used

-importance of the precursor compound used to introduce the erbium ions on the nucleation efficiency

-efficient way to modify the optical properties of a glass

But why only ErF_3 is an efficient nucleating agent?

Structural and thermodynamical considerations

X-microanalysis and XRD

Cubic phase with reduced parameter: solid solution Pb_{1-x}Er_xF_{2+x}

12

ErF₃

Rare earth sites in fluorite type compounds (CaF₂, PbF₂, SrF₂, BaF₂)

A high solubility of rare earths in fluorite structure but many different possible sites due to <u>charge compensation</u> by excess F⁻ anion:

 \rightarrow Isolated ions (6Å between 2 Yb in cubic site) (e.g.: stable in CaF₂):

-Trigonal site (C_{3v}) -Tetragonal site (C_{4v}) -Cubic site (Oh)

 \rightarrow Clusters

- -Dimers (-0.212 eV / Yb^{3+} in CaF_2)
- -Tetramers (-0.124 eV / Yb^{3+} in CaF_2)
- -Hexameric cluster site (-0.319 eV / Yb^{3+} in CaF_2)

[stabilization energy values from Bendall, 1984]

Rare earth sites in fluorite type compounds (CaF₂, PbF₂, SrF₂, BaF₂)

At high concentration: hexameric cluster site largely dominant and mainly responsible for the optical properties:

- Ln₆F₃₇ compatible with fluorite structure:
-short distances between Ln³⁺ ions (3 Å)
-favors energy transfers, cross relaxations, ...
-low local symmetry enhancing transition probabilities

Anyway: solid solution or not, the Ln^{3+} insertion requires simultaneous interstitial F^- ion

What happens with other REF₃?

 ErF_3 YbF_3 CeF_3

Temperature (°C)

Morphology of glass-ceramics (after thermal treatment)

3% YbF

200nm

0.5% ErF3 + 1% YbF₃ + 0.5% CeF₃

HRTEM

200 nm

10 nm

3% ErF₃

0.5% ErF₃ + 2% ¥bF₃

100 AM

Relative nucleation efficiency within co-doped samples

with a same crystallised volume

 $YbF_3 < ErF_3 < CeF_3$

18

 $3\% \text{ ErF}_3$ Size = 20 ± 5 nm

 $0.5\% \text{ ErF}_3 + 1\% \text{ YbF}_3 + 0.5\% \text{ CeF}_3$ Size = 8 ± 1 nm

Segregation efficiency in PbF₂: X-microanalysis

visible crystallite

Yb Er Ce inside crystallites

thin glass-ceramic sample

20

Cause of the various nucleating efficiency Solid solution: $Pb_{1-x}Ln_xF_{2+x}$

	radius(Å) 8F⁻ coordinated	a(Å) for x=0.02	
Pb ²⁺	1.45	5.940	
Ce ³⁺	1.28	5.920	
Er ³⁺	1.14	5.915	
Yb ³⁺	1.12	5.905	
			- _{ord4)} =1.17

Solubility in βPbF_2 : $CeF_3 > ErF_3 > YbF_3$

To the most soluble compound correspond the lowest energy necessary to crystallise the solid solution (smallest critical radius for nucleation)

Nucleation efficiency : CeF₃>ErF₃>YbF₃

After melting at high temperature, the first anionic neighbors of the Er³⁺ ions are conserved (DTA, optical properties) in the glass

 ErF_3 induces nucleation of PbF_2 when $ErCl_3$, ErOF and Er_2O_3 do not

>>>>The way used to introduce the active ions is crucial

 CeF_3, ErF_3, YbF_3 do not act as defects but contribute to crystallize a solid solution $Pb_{1-x}Ln_xF_{2+x}$ energetically favorable

>>>> the "nucleating character" reflects the solubility of the ions in the βPbF_2 phase and induces a reduction of the critical radius for nucleation 22

Looking for ytterbium ions (and clusters ?) inside crystallites thanks to HR-HAADF-STEM

...some images in {111} plane of one grain of CaF_2

BF-STEM

Z contrast (HAADF)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Resolution = 1 Angstrom 24

2.8 3.0 3.2

<110> zone axis

3525001 3520001 3515001 0.0 0.2

0.6

0.8

0.4

Z contrast (HAADF)

3.0 2.8

2.6 2.4 2.2

2.0 1.8 1.6

1.4

1.0

0.8 0.6 0.4 0.2

nm

CNTS

36201 3610-3600

3560

3550

3540

3530-

3520 0.0

Ytterbium clusters

cnrs

 $CaF_{2}: 0.5\%Yb$

 $CaF_2:5\%Yb$

1 2 3 Yb per atomic column

26

Thank you for your attention!