

Cristallisation orientée par laser pour des applications en optique non linéaire

Matthieu Lancry

EPCES/ICMMO, UMR CNRS-UPS 8182, Université de Paris Sud 11, France

Groupe Matériaux Avancés pour la Photonique

Contexte

Méthodes de préparation de cristaux d'oxydes orientés

Preparation Methods	Common non-linear crystal	Features
Controlled heat treatment	LiNbO ₃ , Ba ₂ TiGe ₂ O ₈ , (Ba _x Sr _{2-x})TiSi ₂ O ₈	
Ultrasonic surface treament	Li ₂ B ₄ O ₇ , β-BaB ₂ O ₄ and Ba ₂ TiGe ₂ O ₈	Surface & <u>near</u> surface
Mechanical hot extrusion	Li ₂ SiO ₃	
DC electric field	LiNbO ₃ , KNbSi ₂ O ₇ crystals	<u>bulk</u>
High magnetic field	Ba ₂ TiGe ₂ O ₈	<u>crystalli</u> <u>zation</u>
Laser (today topic !!)	β - BaB ₂ O ₄ , Ba ₂ TiGe ₂ O ₈ , Sm _x Bi ₁₋ _x BO ₃ , (Sr, Ba)Nb ₂ O ₆ , LaBGeO ₅ , Sr ₂ TiSi ₂ O ₈ and LiNbO ₃	

H. Zeng et al., Advances in Materials Science Research. Vol. 12, Nova Science Publishers (2012)

Les principaux cristaux orientés obtenus par laser

On s'intéressera uniquement à des cristaux non-centrosymétrique

Matrice vitreuse	Cristal photo- induit par laser
$30Li_{2}O-10Nb_{2}O_{5}-60SiO_{2}$ $32,5Li_{2}O-27,5Nb_{2}O_{5}-40SiO_{2}$ $34Li_{2}O-33Nb_{2}O_{5}-33SiO_{2}$	LiNbO ₃
40SrO-20TiO ₂ -40SiO ₂	Sr ₂ TiSi ₂ O ₈
25La ₂ O ₃ -25B ₂ O ₃ -50GeO ₂	LaBGeO ₅
$32,5BaO-32,5TiO_2 - 35SiO_2$ $5Na_2O-36BaO-39TiO_2 - 20SiO_2$ $33,3BaO-16,7TiO_2 - 50SiO_2$	BaTiO ₃ , Ba ₂ TiGe ₂ O ₈ , Ba ₂ TiSi ₂ O ₈
47,5BaO-47,5B ₂ O ₃ -5Al ₂ O ₃	β- BaB ₂ O ₄

LiNbO₃: coefficient non linéaire d'ordre deux élevé

β-BBO: coefficient non linéaire d'ordre deux élevé, grande gamme de transparence, seuil de dommage élevé

LaBGeO₅: ferroelectrique, cristallisation congruente

Ba₂TiSi₂O₈: propriétés ferroélastiques, pyroélectriques et piézoélectriques

ICMMO

Applications potentielles: modulateur acousto-optique intégré, guides d'onde à modulation de phase, guides ou réseaux convertisseurs de fréquence, interrupteurs optiques, stockage de données en 3D etc.

Les principales sources laser utilisées pour la cristallisation

Selon la matériau considéré chaque laser présente des avantages et des inconvénients

Qq exemples de lignes cristallisées

LiNbO₃

Polarized optical image of the written curved lines

Laser femtoseconde

LaBGeO₅

A. Stone et al. / Journal of Non-Crystalline Solids 356 (2010)

Fig. 2. Left: Polarized light micrographs of fs laser-crystallized LaBGeO5 lines written in XY plane with bends of 6°, 14°, and 27°. Right: SEM backscattered electron image of a line crosssection. Arrow indicates incident beam direction.

Fig. 2. (a) Polarized optical micrograph of the laser-written architecture on Sm0.5La0.5BGeO5 glass. (b) A second harmonic microscopy image of the architecture in Fig. 2(a).

Fig. 10. Polarization optical micrographs for the bending (angle 30°) and sine-shaped lines written by Nd:YAG laser irradiation in 8Sm2O3- $37Bi_2O_3 - 55B_2O_3$ glass. The laser irradiation conditions are P = 0.9 W and $S = 5 \,\mu\text{m/s}$ for the bending line and P = 0.9 W and $S = 3 \,\mu\text{m/s}$ for the sine-shaped curved line.

Fig. 5. Polarization optical micrograph (a) and second harmonic generation microscope observation (b) for the curved line (designed as a ground picture (bird) in Nazca) on the surface of glass written by Nd:YAG laser irradiation.

Laser continu

$Sm_{x}Bi_{1-x}BO_{3}$

R. Ihara et al. Solid State Com., 136 273-277 (2005)

Chauffage par désexcitation non radiative

Les deux principales méthodes de chauffage au moyen de lasers à émission continue

REAH (Rare Earth Atom Heating)

R. Sato et al. J. Non-Cryst. Solids 289 (2001)

Sm³⁺, Dy³⁺, Nd³⁺ ... >5mol% Sm₂O₃, Dy₂O₃

TMAH (Transition Metal Atom Heating)

T. Honma et al. Appl. Phys. Lett. 88 (2006)

Ni²⁺, Fe²⁺, Cu²⁺, ... Typ. 0.01-1mol%

Principaux cristaux obtenus: β-BaB₂O₄, LiNbO₃, Ba₂TiGe₂O₈, Sm_xBi_{1-x}BO₃, Sr_{0.5}Ba_{0.5}Nb₂O₆, KSm (PO₃)₄

Cw laser crystallization

Influence des paramètres d'irradiation

$10Sm_2O_3 - 35Bi_2O_3 - 55B_2O_3 \implies Sm_xBi_{1-x}BO_3$

Plan XY

T. Komatsu et al. J. Am. Ceram. Soc., 90 [3] 699–705 (2007)

Fig. 3. Polarization optical micrographs for $10Sm_2O_3$ -35Bi₂O₃-55B₂O₃ sample obtained by Nd:YAG laser irradiation. The laser power was 0.6–0.9 W and the scanning speed was 10 μ m/s.

 $21Sm_2O_3-64MoO_3-15B_2O_3 \longrightarrow Sm_2(MoO_4)_3$

Plan XZ (section transverse)

T. Komatsu et al. J. Am. Ceram. Soc., 90 [3] 699–705 (2007)

Fig. 4. Polarization optical micrograph for the cross section of a crystal lines written by Nd:YAG laser irradiation in $21.25\text{Sm}_2\text{O}_3$ -63.75MoO₃-15B₂O₃ glass. The laser power was 0.42 W and the scanning speed was 10 μ m/s.

Qq inconvénients:

- Limité à la surface
- Vitesse de croissance <10µm/s
- La surface favorise la nucléation hétérogène

Mise en évidence de la cristallisation et de son orientation

Orientation des cristaux en régime statique

Le caractère orienté de la cristallisation est mis en évidence par la génération de second harmonique, par Raman ou par EBSD

T. Komatsu et al. / Journal of Solid State Chemistry 2010

Mais, on peut aller plus loin et chercher à maîtriser l'orientation de la cristallisation au cours du déplacement du laser !!

Cw laser crystallization

Orientation des cristaux avec le déplacement Cw laser crystallization

Mise en évidence de l'orientation en Raman

Fig. 9. Polarized optical microscope photograph for the sample obtained by Yb:YVO₄ laser (λ =1080 nm) irradiations with *P*=1.4 W and *S*=7 µm/s in the Cu-INS glass

H. Sugita et al. / Solid State Communications 143 (2007) 280–284

Orientation des cristaux avec le déplacement

Cw laser crystallization

Mise en évidence de l'orientation par génération de seconde harmonique

 $8Sm_2O_3 - 37Bi_2O_3 - 55B_2O_3 \longrightarrow Sm_xBi_{1-x}BO_3$

T. Komatsu et al. J. Am. Ceram. Soc., 90 [3] 699-705 (2007)

Fig. 5. Polarization optical micrograph (a) and second harmonic generation microscope observation (b) for the curved line (designed as a ground picture (bird) in Nazca) on the surface of glass written by Nd:YAG laser irradiation.

$$0.5CuO-40Li_2O-32Nb_2O_5-28SiO_2 \longrightarrow LiNbO_3$$

T. Honma et al. / Optical Materials 31 (2008) 315-319

Fig. 6. Second harmonic (SH) wave images (532 nm) at different configuration (H-H mode) for the crystal line which written in the sample No. 2.

Cristallisation orientée par laser femtoseconde

3.1 Introduction et mécanisme de chauffage

3

Fs laser crystallization

Intérêt d'utiliser un laser femtoseconde

Pourquoi le laser femtoseconde ?

Propriétés modifiables de façon permanente:

- Indice de réfraction (isotrope, anisotrope (typ 10⁻²), trous en volume (100nm-1µm)
- Absorption (e.g. dichroisme linéaire ou circulaire en particulier dans l'UV)
- Propriétés optiques non-linéaires (précipitation de nanoparticules metalliques + changement de forme, cristallisation orientée)

A. Stone et al. / Journal of Non-Crystalline Solids 356 (2010)

La méthode et les principaux paramètres

Typiquement

 $\lambda = 400-1500$ nm (*typ. 800 ou 1030*), *i.e. la photo-excitation électronique est finie avant le transfert au réseau (augmentation de température)*

 \approx énergie de formation de SiO₂

<u>Energie</u> : 0.01-4 µJ (10¹²⁻¹⁴ W/cm²) *i.e. énergie déposée par 1 pulse dans le volume focal*

Focalisation en volume, ON = 0.1-1.4 (*typ. 0.6*) i.e. waist \approx 1.5 µm

Fréquence de répétition : jusque 100MHz, (typ. 200-250 kHz)

temperature to prevent growth.

Mécanisme de chauffage

1. Prenons une impulsion comme « référence »

the glass while minimizing the creation of nucleus and their growth.

18

Mécanisme de chauffage

2. Nécessité d'accumuler de la chaleur (qq 100's µs)

Résolution de l'équation de la chaleur avec dépendance en T de ρ , C_p, κ

Cristallisation orientée par laser femtoseconde

3.1 Introduction et mécanisme de chauffage

3.2 qq exemples de résultats extraits de la littérature:

 $Li_2O-Nb_2O_5-SiO_2 \longrightarrow LiNbO_3$

 $SrO-TiO_2-SiO_2 \longrightarrow Sr_2TiSi_2O_8, SrTiO_3$

 $La_2O_3-B_2O_3-GeO_2$ — LaBGeO₅

3

Fs laser crystallization

Influence des paramètres d'irradiation

Sous le seuil d'accumulation de chaleur (typ. < 200kHz)

 $32.5Li_{2}O-27.5Nb_{2}O_{5}-40SiO_{2} \longrightarrow LiNbO_{3}$

Mécanismes:

∆n<0

∆n>0

mm

 \vec{k}

 Chạt de densité (augmentation locale de la température fictive) Chan et al. Appl. Phys. A 76 (2003) Hosono et al. NIM PRB 191 (2002) Lancry et al. OME (2012)

Réponse élastique Erraji-Chahid et al. BGPP conf (2010) Poumellec et al. Opt. Express (2008)

 Défauts ponctuels Hosono et al. NIM PRB 191 (2002) Sun et al. J. Phys. Chem. B 104 (2000) Lancry et al. OME (2012)

Fs laser crystallization

Influence des paramètres d'irradiation

Vitesse de croissance jusque 10mm/min !!

Mise en évidence de la cristallisation

A. Ston al. / Journal of Non-Crystalline Solids 356 (2010)

Comment expliquer la forme de coquille ?

Plot of temperature profiles with the nucleation and growth T range to time T (Temperature) E: one given pulse energy; E1>E2>E3 V: one fixed moving velocity of laser **Crystal growth range E2 Nucleation range** Heat accumulation, <0.1ms (+ incubation time) (Time) In scanning mode ~s: Relation between the velocity of laser and laser waist diameter Heat diffusion time, ~µs in static mode ICN

Fs laser crystallization

Influence des paramètres d'irradiation

Exemple de SrO-TiO₂-SiO₂

0.6

0

10

15

20

Writing velocity (um/s)

1030nm, 300fs, 300kHz, 5-40 μm/s, 1.5 μ J (gauche) and 0.7 μ J(droite) d=150 μ m

30

25

35

Orientation des cristaux

X10

Exemple de SrO-TiO₂-SiO₂: cartographie d'orientation

Images EBSD codant l'orientation de cristaux de Sr₂TiSi₂O₈

L'axe polaire des cristaux est orienté préférentiellement dans la direction de déplacement

1030nm, 300fs, 300kHz, 5-40 $\mu m/s$ 1.7 μJ (gauche) and 0.7 μJ (droite) d=150 μm

Taille et orientation des cristaux

Exemple de Li_2O-Nb_2O_5-SiO_2 Images EBSD codant l'orientation de cristaux de LiNbO₃

A "haute" énergie, l'axe polaire des cristaux est orienté préférentiellement dans la direction de déplacement

A "basse" énergie, l'axe polaire des nanocristaux est orienté perpendiculairement

Conclusions et perspectives

Formation de cristaux ONL 2D: laser continu 3D: laser femtoseconde

Cristallisation sélective en 2D ou en 3D

 β -BaB₂O₄, Ba₂TiGe/Si₂O₈, Sm_xBi_{1-x}BO₃, LiNbO₃, LaBGeO₅, Sr_{0.5}Ba_{0.5}Nb₂O₆, etc...

Vers un controle de la taille

Qq 10's nm

Cristallisation orientée

Axe polaire parallèle au déplacement du laser

Conclusions et perspectives

