Crystals in ancient and modern glass

Laurent Cormier

IMPMC, CNRS Sorbonne University Laurent.cormier@sorbonne-university.fr

PALM group at IMPMC Georges Calas Laurence Galoisy Guillaume Ferlat Gerald Lelong Nicolas Menguy

Former students or post-doc **Odile Majerus Coralie Weigel** Marie Guignard **Olivier Dargaud** Aymeric Dugué **Benjamin Cochain** Louisiane Verger Maxime Ficheux Pauline Glatz Marie Godet Cécile Noirot Lea Gardie Adrien Donatini Elise Langagne **Dimmitrios Isaias** Pierre-Emmanuel Bes de Berc

Acknowledgements

IPGP
Daniel R. Neuville

IRAMAT Nadine Schibille

CEMHTI
 Dominique Massiot
 Pierre Florian
 Valérie Montouillout

Saint Gobain
 Katia Burov
 Emmanuelle Gouillart
 Hervé Montigaud
 Cécile Jousseaume

Corning
 Monique Comte
 Peggy Georges
 Tiphaine Fevre

SOLEIL
 Nicolas Trcera
 François Baudelet
 Anne-Marie Flank
 Pierre Lagarde
 Emiliano Fonda
 Sophie Belin

UCCS - Lille
Lionel Montagne

Vavilov State Optical Institute
 Olga Dymshits

IRCP – Chimie Paris
 Odile Majérus
 Daniel Caurant
 Anne Bouquillon

Toronto Grnat Henderson

What is the common point?

Historical glass/glazes

Egyptian vase 15th BCE

Roman mosaic

> Modern products

Portland vase (British Museum, London)

Red stained glasses 13th CE

Limoges enamel 12th CE

Yellow stained glasses 15th CE

Opal cup 20th CE

→ Cooktop (Eurokera / Corning-Saint-Gobain)

→ biocompatible material

→ CorningWare "Vision" ™ an historical product

→ telescope mirror Very Large Telescope (VLT – Eso) Zerodur® (Schott)

Crystallization is used since Antiquity

Filigrane glass (Venice) 16th century

Filigrane glass (Doremus) 21th century

the use of crystals in glasses has been a common practice for 3500 years:

- to achieve specific colors \Rightarrow white, yellow, red
- to opacify \Rightarrow tesserae, glaze, enamel

glass on ceramics

glass on metals

 to achieve new properties (thermal expansion, mechanical) ⇒ modern glassceramics

Crystallization from the liquid state

- •Crystallization can occur when a liquid is cooling down
- \Rightarrow very important for geological processes

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Α

Crystals also in natural volcanic glass, obsidian		Major oxide ($n = 136$)	wt%
		SiO ₂	75.0
Non and the second		TiO ₂	0.22
		Al ₂ O ₃	12.0
		FeO	3.23
and the second second		MnO	0.11
Carles Photos		MgO	0.1
		CaO	1.68
		Na ₂ O	4.19
and the second		K ₂ O	2.75
		Total	99.3

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Snowflake obsidian. Image © iStockphoto / Fernando Sanchez.

Crystals also in natural volcanic glass, obsidian

From macro ...

•Plagioclase, SiO₂ polymorphs (cristobalite), magnetite (Fe₃O₄)

9

... to nanoscale

Iron spinel Magnetite nanocrystals (Fe₃O₄)

Importance of the scale !

Watkins et Rossman, Can. Mineral. 2007

Optical absorption spectroscopy

Variable temperature optical absorption spectroscopy

IVCT (Inter-valence charge transfer) Fe²⁺-O-Fe³⁺

- Galoisy & Calas, *Chem. Geol.* 559 (2021) 119925
- doi: 10.1016/j.chemgeo.2020.119925
- Cormier, Galoisy, Lelong, Calas, *Comptes rendus Physique* 24 (2023) 199 doi: 10.5802/crphys.150

Variable temperature optical absorption spectroscopy

IVCT (Inter-valence charge transfer) Fe²⁺-O-Fe³⁺

Galoisy & Calas, *Chem. Geol.* 559 (2021) 119925
 doi: 10.1016/j.chemgeo.2020.119925
 Cormier, Galoisy, Lelong, Calas, *Comptes rendus Physique* 24 (2023) 199

doi: 10.5802/crphys.150

edge-sharing sites ⇒ a Fe-rich
 local structure already present in
 the glass

Obsidian contains nanolites iron spinel (~5 nm) and ironrich amorphous regions

Iron rich clusters/nanolites confirm by EPR

poster Dimitrios Isaias

Aluminosilicate systems

- Glass domain similar for the ZAS and MAS system
- Likely a similar structural role for $\rm Zn^{2+}$ and $\rm Mg^{2+}$
- □ Neuville, Cormier, Massiot, Chem. Geol. 229 (2006) 173 doi: 10.1016/j.chemgeo.2006.01.019
- Guignard & Cormier, Chem. Geol. 256 (2008) 111 doi: 0.1016/j.chemgeo.2008.06.008
- 📮 Neuville, Cormier, Montouillout, Florian, Millot, Rifflet, Massiot, Am. Miner. 93 (2008) 1721 doi: 10.2138/am.2008.2867
- Cormier, Delbes, Baptiste, Montouillout, J. Non-Cryst. Solids 555 (2021) 120609 doi: 10.1016/j.jnoncrysol.2020.120609

Al environments, ²⁷Al NMR

- Al improves glass forming ability
- ^[5]Al highest proportion along the tectosilicate
- Deuville, Cormier, Massiot, Chem. Geol. 229 (2006) 173 doi: 10.1016/j.chemgeo.2006.01.019
- Guignard & Cormier, Chem. Geol. 256 (2008) 111 doi: 0.1016/j.chemgeo.2008.06.008
- 📮 Neuville, Cormier, Montouillout, Florian, Millot, Rifflet, Massiot, Am. Miner. 93 (2008) 1721 doi: 10.2138/am.2008.2867
- Cormier, Delbes, Baptiste, Montouillout, J. Non-Cryst. Solids 555 (2021) 120609 doi: 10.1016/j.jnoncrysol.2020.120609

Al coordination in aluminosilicate glasses

Presence of ^[5]Al in the left part of the diagram
 High proportions of ^[5]Al on the tectosilicate join

Different glasses – different nucleation behaviors

Cormier at al., *Mater. Chem. Phys.* 152 (2015) 41

doi: 10.1016/j.matchemphys.2014.12.008

Is there a specific Zr site for nucleation ?

Is there a specific Zr site for nucleation ?

→ No link between coordination and nucleation effect

Is there a specific Zr site for nucleation ?

Verre Na₂O-CaO-SiO₂-Al₂O₃ + ZrO₂ de 5 à 15 poids%

Comparaison références cristallines

□ Ficheux at al., *J. Non-Cryst. Solids* 539 (2020) 120050 doi: 10.1016/j.jnoncrysol.2020.120050

Thèse Maxime Ficheux Coll. SVI-Saint Gobain Recherche

Heterogeneities in aluminosilicate glasses

Cormier, Galoisy, Lelong, Calas, *Comptes rendus Physique* 24 (2023) 199 doi: 10.5802/crphys.150

AlO₅ and AlO₆ polyhedra

- \Rightarrow important edge-sharing linkages
- \Rightarrow denser regions formed by ^[5]Al–^[6]Al-rich domains

[□] Liao et al., *Phys. Chem. Lett.* 11 (2020) 9637 doi: 10.1021/acs.jpclett.0c02687

Heterogeneities in aluminosilicate glasses with Zr

 $\rm AlO_5$ and $\rm AlO_6$ proportions increase as $\rm ZrO_2$ is added

Connectivity between Al and Si

Heterogeneities in aluminosilicate glasses with Zr

 $q(A^{-1})$

doi: 10.5802/crphys.150

Heterogeneities in aluminosilicate glasses

Glass MgO-Al₂O₃-SiO₂-ZrO₂

Electron microscopy in HAADF mode is chemical information

Greaves's model

Zones enriched in network formers

Zones enriched in nonnetwork formers

White zone = regions enriched in Zr S non-homogeneous distribution of Zr within the glass structure

Dargaud et al. J. Appl. Phys. 99 (2011) 21904 doi: 10.1063/1.3610557] Cormier & Neuville, *Reflets de la Physique* 74 (2022) 22 doi: 10.1051/refdp/202274022

Crystals in historical glass/glazes

→ Crystals in glazes

Chromium pigments in glaze decoration of Sèvres's porcelains + reactivity of the pigments in the glaze (L. Verger)

Glazes ceramics objects from Elam (Iran), 1500-539 BCE (A. Aarab, 2023)

Crystals at the paste/glaze interface
 M. Godet, T. Roisine, D. Caurant, A. Bouquillon, O. Majérus

historical samples

CasaSiO. Cr SaO. Cr

ZnAl₂O4:Cr, MgAl₂O4:C

0.JA-0.7

Ca.Cr./SiO

➔ Crystals in Roman glass tesserae C. Noirot, L. Gardie, N. Schibille

Red and orange coloration

Noheda, Cuenca, Spain

Cu²⁺-Cu⁺ dans les verres

Atmosphère très réductrice : Cu⁺ ion (ne produit aucune couleur) jusqu'à (

- nanoparticules métalliques (cuivre précipité Cu⁰)
 ⇒ rouge
- Cristaux Cu₂O
 Coloration + opacification
 ⇒ rouge ou orange

Vitrail de l'Ascension 1120 CE

Cathédrale du Mans

illique)

Kunicki-Goldfinger et al. (2014)

Monochrome tesserae: origin of the color

Noirot at al., *Heritage* 5 (2022) 2628
 doi: 10.3390/heritage5030137

Role of lead ?

Redox of Cu determined by EPR

Presence of lead changes minimally the Cu redox state

Lead is acting of the viscosity to allow the grwoth of Cu₂O crystals before the crystallization of the remaining silicate glass

 \rightarrow Impact of Pb on Cu₂O shape and color?

Striped orange/red tesserae: Cu speciation

XANES at Cu L-edge LUCIA beamline

- Same base glass composition.

Probably red and orange prepared separately and mixed together in reduced atmosphere

MET images on FIB blades and

Noirot at al., *Heritage* 5 (2022) 2628
 doi: 10.3390/heritage5030137

Reproduction

Influence of temperature on redox control: Study of liquid under Ar/H2

- Control of the redox in glasses => composition, oxygen fugacity, temperature
- Ce, Sb, Sn, Fe, Cu

Merci

