

Current technologies nuclear waste vitrification furnaces / Technology and issues

Emilien Sauvage^{1*}, Patrice Brun¹ and Régis Didierlaurent²

¹CEA, DES, ISEC, LDPV, Univ Montpellier, Marcoule, France

²Orano

30/04/2024

*corresponding author : emilien.sauvage@cea.fr

Summary

1. Introduction

- **2. French radioactive waste vitrification technology**
- **3.** Ceramic melter around the world
- **4.** Difficulties arising with the Noble Metal Particles

5. Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

The vitrification process in the nuclear fuel cycle

- To ensure the long-term containment of High-Level and Long-Lived Radioactive Waste (HLW), primarily consisting of:
 - Fission Products Minor Actinides **Extraction** Treatment electric energy $\approx 4\%$ Final **Used fuel** storage HLW vitrification

Example of chemical composition of a waste solution to be vitrified (UOx type)

		1 ← numèn H ← symbo	iment (gaz, liquide o atomique le chimique mique relative au [celle										13	14 ¥A	15 V A	16 VIA	17 V 14.	hillum 2 He 4,002602
	2	tium biryium 3 4 Li Be 9,012102											bore 5 8 10,611	carbone 6 C 12,0107	azote 7 N 14,00674	coygène 8 0 15,9994	fluor 9 F 10,9984032	nton 10 Ne 20,1797
Fission product Actinides	3	nagnisium 11 Na 12 Mg 24,3050	3	4 V 0	5 W 0	410 6	7 981		9 V 10	10	11 B	12	13 Al 26, 9815386	ulicium 14 Si 28,0855	trinosphore 15 P 20, 973762	soufre 16 5 32,066	chiore 17 Cl 35,4527	argon 18 Ar 39, 948
Corrosion and degradation	4	calcium 19 20 K Ca 19 40,070	scandum 21 Sc 48,955912	titare 22 Ti 47,857	vanadium 23 V 50,9415	Chrome 24 Cr 51,9961	manganèse 25 M n 54,938045	fer 26 Fe 55,945	cobait 27 Co 58,933195	78508 28 Ni 58,6934	cuivre 29 Cu 63,546	zinc 30 Zn 65,39	gallum 31 Ga 69,723	germanium 32 Ge 72,61	arsenic 33 As 74,92160	34 Se 78,96	brome 35 Br 79,904	krypton 36 Kr 83,80
products Adjuvants	s (10000000000000000000000000000000000000	sttnum 39 Y aa, 90585	иссийал 40 2г 91,224	10000000000000000000000000000000000000	100ybden 42 Mo 95,94	43 Tc 97,9072	nathenian 44 Ru 101,07	rhodum 45 Rh 102,90550	0.000 46 Pd 106,42	argent. 47 Ag 107,9682	Cadmiun 48 Cd 112,411	indum 49 In 114,818	ettain 50 5n 118,710	51 5b 121, 760	toikure 52 Te 127,60	iode 53 1 126,90447	xlinon 54 Xe 131,29
Fines de cisaillage	۰ (55 56 Cs Ba 9054517 137,327	larthanides 57–71	979477 72 Hf 178,49	tantale 73 Ta 180, 94788	tungutiine 74 W 163,94	rhinium 75 Re 196,207	osimium 76 Os 190,23	iidium 77 Ir 194,217	platine 78 Pt 195,094	79 Au 196, 966569	mercure 80 H g 200,59	thalium 81 Tİ 204, 3833	plomb 82 Pb 207,2	bismuth 83 Bi 208,98040	polonium 84 Po (208, 9824)	astate 85 At [209,9871]	radon 86 Rn (222,0176)
	7	87 88 Fr Ra 1,0197] [226,0254]	activides 89–103	104 Rf	dubnium 105 Db (262, 1144)	seaborgium 106 5g (266,1219)	bohrium 107 Bh [264,1247]	hassium 108 Hs [269,1341]	meitnerium 109 Mt [268,1388]	iarmatadium 110 Ds [272,1463]	roentgenium 111 Rg [272, 1535]	copernicium 112 Cn (277)	ununtrium 113 Uut (284)	ururgusdum 114 Uuq (209)	unurpentium 115 Uup (200)	urunhesium 116 Uuh [292]	ununueptium 117 Uus (292)	ununsetium 118 U uo (294)
				Sorthure 57 La 138,90547	certum 58 Ce 140, 116	prassloodyn 59 Pr 140,90765	nelodyme 60 N d 144,242	61 Pm [144,9127]	62 5m 150,36	europium 63 Eu 151,964	Gadolraum 64 Gd 157,25	tertaum 65 Tb 158,92535	0ysprosius 66 Dy 162,500	holmium 67 H o 164,93032	erbium 68 Er 167,259	thuilum 69 Tm 168,93421	ytterbium 70 Yb 173,04	latéciam 71 Lu 174,967
			L	actinium 89 Ac [227,0277] 2	90 Th	protactinium 91 Pa 231, 03588	52 92 U 238, 02991	neptunium 93 Np (237, 0482)	patonium 94 Pu (244, 0642)	américium 95 Am (243, 0614)	curium 96 Cm (247,0703)	beriotikum 97 Bk [247,0703]	californium 98 Cf [251,0796]	einsteinium 99 Es [252,0830]	fermium 100 Fm [257,0951]	mendilikivkum 101 M d [258,0984]	nobilium 102 No (259,1011)	lawrencium 103 Lr [262, 110]
		mitaux alcain alcains terreu		actinides		aux de seition	métaux pauvres	métalkides	non-milta	ux halog	pirnes. g	az nobies			prime	rdial	integration d'autres éléments	synthétique

Cez

Which choice of confinement matrix?

- Organic or cement-encased materials: excluded due to activity level
- Mineral materials
 - ✓ Crystalline materials: initial research focus (late 1950s). Difficulty in incorporating all Fission Products
 - ✓ Glassy materials (from the 1960s).
 - Well-known material, used for centuries
 - Archaeological analogues available
 - Stability under irradiation
 - Chemical durability, good corrosion resistance
 - Physico-chemical properties in line with the incorporation of a broad chemical spectrum of radionuclides
 - Industrial feasibility

Vitrification processes - Definition

- Functions to be ensured:
- 1. Water removal: Evaporation, drying
- 2. Transformation of elements into oxides
- 3. Introducing constituents of the glass matrix
- 4. Glass production: Reaction between materials and fusion
- 5. Gas treatment
- 6. Glass package production and storage

(100°C) (300°C to 800°C)

(1050°C to 1250°C)

Summary

- **1. Introduction**
- 2. French radioactive waste vitrification technology
- **3.** Ceramic melter around the world
- **4.** Difficulties arising with the Platinum Group Metal Particles
- **5.** Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

Major French Vitrification Technology Milestones

Vitrification of High-Level Waste (HLW) is the internationally recognized standard to:

- Minimize the final waste volume
- Minimize the impact to the environment resulting from waste disposal

Orano's Vitrification Industrial Experience Óver 40 years **AVM Marcoule – Operated by Orano** of from 1978 to 2009 Additives Industrial Gaseous release Dust scrubber Operation recycling **Final** gas **1 vitrification line** Flow rate treatment measurement Condenser ~ 3 300 canisters produced ~ 1 220 metric tons of glass produced Liquid waste Dust scrubber processing • $\sim 22 \ 10^6 \ \text{TBg}$ vitrified

R7 / T7 La Hague Plant – Operated by Orano since 1989

2 vitrification facilities (6 lines)

IHMM (end of 2022)

- $\sim 24~700$ canisters produced
- ~ 9 900 metric tons of glass produced
- $\sim 377 \ 10^6 \ TBq$ vitrified

CCIM (end of 2022)

• \sim 1 000 canisters produced

Main Vitrification Technologies Developed in France

CCIM

Cold Crucible Direct induction In operation since 2010

IHMM

Metallic Melter Indirect induction In operation since 1978 **In-Can Melter**

Resistance heating Thermal homogenization

Full scale pilot commissioned in 2020

Induction Heated Metallic Melter

Design Principles

- Inductive joule effect into metallic wall
- **Control** Thermal flux from metallic wall to molten glass
- Mixing ensured by bubbling and stirring

Process operation

- ➡ T° ~ 1100 °C
- Calcine fed
- Continuous feeding / Batchwise pouring

TRL 9

- Over 40 years of industrial operation
- Over 11 100 metric tons of glass produced

Wasteform

- Homogeneous borosilicate glass
- Around 1 Ci/g

Cold Crucible Induction Melter

Design Principles

- Glass heated by Joule effect (Currents directly induced inside the molten glass)
- Cooled structures → Solidified layer of glass protecting the melter from the corrosive melt
- Mixing ensured by bubbling and stirring

Process operation

- T°: beyond 1300°C
- Solid or liquid fed
- Continuous feeding / Batchwise pouring
- High glass throughput reachable (higher T°)

TRL 9

Over 14 years of industrial operation

Wasteform

- Homogeneous borosilicate glass
- Glass-ceramic
- High waste loading reachable (higher T°)

DEM&MELT In-Can Melter

DEM&MELT principles

DEM&MELT full-scale pilot

Design Principles

- Electrical resistance heating 0
- Canister used as the melter (no pouring device) 0
- Mixing ensured by heat convection 0
- Scalable 0

Process operation

- Operating temperature range ~ 100°C 1150°C 0
- Solid or liquid fed 0
- Batch process 0

TRL 7

- Full scale pilot commissioned in 2020 0
- Design benefiting from proven technologies 0

Wasteform

- Homogeneous borosilicate glass 0
- **Composite matrices** 0
- Waste encapsulation 0
- High waste loading reachable (up to 80 wt%) 0

Summary

1. Introduction

- **2. French radioactive waste vitrification technology**
- **3.** Ceramic melter around the world
- **4.** Difficulties arising with the Noble Metal Particles

5. Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

USA : Defense Waste Processing Facility (Savannah River – USA)

Atelier DWPF

- First melter from 1996 to 2002 replaced by a second improved melter in operation during 12 years.
- Third melter in operation since 2017
- Empty mass 65 t
- Waste to be treated: 130,000 m3 of sludge in 51 tanks of military origin
- Different glass formulation for each tank
- Very few Noble Metal particles
- Capacity from 70 to 100 kg/h
- Installation of bubbler rods to improve productivity
- 4,200 canisters have been poured (8000 tons of glass)

https://www.energy.gov/em/articles/defense-waste-processing-facilityreaches-25-years-successful-operations-srs

USA : Hanford VIT plant

- Two plants : Low level Waste facility and High level Waste facility
- LLW facility
 - 300 tons furnace
 - 18 bubblers rods
 - Flat bottom
 - No Noble Metals particles

https://melterheatup.hanfordvitplant.com/

https://youtu.be/NOcpthpN3g0

The LLW facility is in the starting operations The HLW facility is under construction and will produce an annual average of 480 canisters.

cez

17

Russia : Mayak EP-500/1R ceramic melter

Vitrification since 1987

Four succesive ceramic melters

Molybdenum electrodes in the bottom

More than 4000 tons of glass produced

Low content of NM <0,1 %w

Japan : Tokai Vitrification Facility

TVF – (Tokaï mura)

- Tokai plant reprocessing solutic (light water reactors)
- Two successive furnaces
 - 1995 to 2002
 - 2004 to 2007
- Production 8.5 kg/h but reduced 6.5 to manage Noble Metals particles
- Empty mass : 15 tons
- 100 tons of glass produced
- Bottom slope 45°

High Active Liquid Waste Vitrification Equipment Outline (Glass Melting Furnace)

Germany : VEK (WAK plant Karlsruhe)

Features

- 2008 2009
- Steeply inclined bottom
- 9 month of operation
- Production of 5 to 7 kg/h
- 50 tons of glass produced
- NM <1%
- Bottom slope of 65°
- Accumulation of NM after 7 months
- Installation of bubbling
- Glass rinse without Pts

Major characteristics of the melter

Outer diameter	1.5 m
Height	1.75 m
Weight	9 Mg
Nominal throughput	10 l/h
Glass production rate	7 kg/h
Melting pool volume	400 kg
Glass per batch	100 kg
Duration of a filling campaign	1.5 h
Filling frequency	every 15 h

http://www.ewn-gmbh.de/ewngruppe/wak/decommissioning-projects/karlsruhe-reprocessing-plant-wak-plant/vitrification.html?L=1

Summary

1. Introduction

- **2. French radioactive waste vitrification technology**
- **3.** Ceramic melter around the world
- **4.** Difficulties arising with the Noble Metals Particles

5. Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

Platinum Group Metal particle (PGM)

- In the nuclear glass, noble metal particles are present
 - Concentration depending on the waste type (0.1 to 3 %w)
 - Ruthenium dioxide (RuO_2) needles
 - Palladium Rhodium (Pd Rh) spheres

- Strong impact on the vitrification process via the physical properties of the glass :
- i. **Viscosity** \rightarrow impact on the mixing quality of the glass
- ii. **Density** \rightarrow impact on the sedimentation / settling risk
- iii. Electrical conductivity \rightarrow impact on the induction heating

X Micro-tomography

- Samples of inactive glass send to the European Synchrotron Radiation Facility (ESRF, ID19)
- Voxel size of $0,16^3 \ \mu m^3$

Description

Needles : Ruthenium dioxide (*RuO*₂)

Spheres : Palladium (*Pd*)

Diameter of one sphere : ~ 5 μm

Volume fraction of particules in this sample : 3,5 %v (~10%w PGM)

Noble Metal particles effect on the viscosity

- The temperature dependence of the glass viscosity is well modeled with an VFT law
- A non Newtonian behavior of the viscosity is observed with NM particles
- Particles tend to aggregate under low shear conditions leading to an increase in apparent viscosity
- In fact, the structuration of the particles is quite a slow phenomenon (several hundred seconds)

Caroline Hanotin, *et al.* (2016), Journal of Nuclear Materials, 477.

Machado, Norma Maria *et al.* (2022). Journal of Nuclear Materials. 563.

Noble metal particle effect on electrical conductivity of the nuclear glass

• The law of effective electrical conductivity shows a percolation threshold concentration : Cp

Example electrical circulation in the Noble Metals particles (gray)

Japan : KA vitrification plant (Rokkasho Mura)

- Vitrification of the Rokkasho reprocessing nuclear used fuel plant (800t CU/year)
- 40 tons empty
- Bottom slope at 45°
- Noble Metal particles content at ~1 w%
- Around 4000 kg of molten glass
- Theoretical production of 43 kg/h
- Maximum production reach : 28 kg/h
- Significant difficulties in managing NM which create short circuits between electrodes
- The "plant acceptance" of the vitrification furnaces has still not been finalized. The factory is at a standstill.

Yoshiyuki, ISO; MATSUNO, S.; UCHIDA, H.; Isamu, OONO; FUKUI, T. & Takaaki, OOBA Proceedings of the International Conference on Nuclear Engineering, **2007**, doi=10.1299/jsmeicone.2007.15._ICONE1510_116

Figure 1. HLW Glass Melter

Japan : KA vitrification plant (Rokkasho Mura)

- Modelisation of the Noble Metals particles in the melter
 - Sedimentation of NM
 - Enhancement of local electrical conductivity of the glass
 - Distortion of electrical current path and Joule effect efficiency
 - Risk of short circuit or overheating and degradation of the refractory

doi=10.1299/jsmeicone.2007.15. ICONE1510 116

France : Noble Metals Incorporation Achievements IHMM

Several technological enhancements implemented to the melter design to improve mixing capability

- Initially → R7/T7 melters equipped with a single bubbler
- 1990 → R7/T7 melters equipped with 4 bubblers
- 1996 → R7/T7 melters equipped with 4 bubblers and mechanical stirring

Operating parameters optimizations to increase NM incorporation as well as glass throughput

- Analyze of industrial operation feedback
- Identification of key process parameters affecting NM incorporation efficiency
- Definition of new recommended operating parameters
- Progressive implementation in the R7 & T7 facilities

France : Noble Metals Incorporation Achievements CCIM

Design of mixing in the Cold Crucible melter has take into account the NM particles problem from the beginning

- Mechanical stirring and gas bubbling promote a good thermal homogeneïty and prevent any NM sedimentation
- UOx glass with up to 2.6 wt% of NM (RuO₂, Rh, Pd) is produced at La Hague plant with CCIM
- Numerical simulation has helped to understand and design the mixing in the CCIM

Temperature, velocity and Joule power density fields in the glass

 $U \in [0; 1] \text{ m/s}$

 $p_J \in [0; 4] \text{ MW/m}^3$

Iso-contour of NM concentration and Induced electric current in the glass

Iso-contour C = 5,3 % v

Conclusion

- ► All glass melters for nuclear waste vitrification are full electric due to off-gas treatment
- Ceramic melter with different electrode configuration are used in several country in the world.
 - ► They are suitable for nuclear glass composition without Noble Metals particles
- ► In France, induction melter are used (indirect and direct) because of their compactness
 - Induction heated metallic melter has proven its ability to produced HA nuclear glass with outstanding records of operation & plants availability and with respect to safety and glass quality
 - Cold crucible induction melter is efficient to produce highly corrosive glass and with a high content of NM

IHMM

- In operation since 1989
- \sim 24 700 canisters produced
- $\sim 377 \ 10^6 \ TBq \ vitrified$
- Noble Metals incorporation
- A Glass throughtput
- A Melter (IHMM) lifetime

CCIM

- In operation since 2010
- Retrofitted in a IHMM vitrification cell
- ~ 1 000 canisters produced
- High throughput
- Treatment of highly corrosive glass melts
- High NM incorporation

CCIM is also suitable to produce non nuclear glass of very high purity ! We perform melting tests at the CEA Marcoule

Thank you for your attention

CEA MARCOULE

BP17171

30207 Bagnols-sur Cèze Cedex

France

émilien.sauvage@cea.fr

+ 33 4 66 79 18 19

CCIM is also suitable to produce non nuclear glass of very high purity ! We perform melting tests at the CEA Marcoule