ÉCOLE DOCTORALE

INTERFACES Approches Interdisciplinaires : Fondements, Applications et Innovation nanosciences & innovation

DE LA RECHERCHE À L'INDUSTRIE

universite

PARIS-SACLAY

Prix de thèse USTV 2019 Journées USTV Rennes 2021

www.cea.fr

Development of a new approach for the structural modeling of glasses combining atomistic modeling and NMR: Application to lanthanum aluminoborate

E. CHESNEAU

SUPERVISORS: T. CHARPENTIER, D. CAURANT

INTRODUCTION

What is glass ?

"Glass is an amorphous material exhibiting a glass transition phenomenon"

J. Zarzycki, Les verres et l'état vitreux, 1982

Glass is an old material ...

XVIth century B,C : first man made glass

... and very widespread nowadays

Table glass (Duralex[®])

Dishes Pyrex[®]

Window glass (float process)

➔ Low added value

Glass Duralex[®], restaurant 1, CEA Saclay, XXIst century after J.C

Ænochoé, Italia, VIth century B.C

dishes Pyrex

Glass has a growing attraction

modern architecture

Glass is also a technological material

R7T7 glass optical fiber biocompatible glass Gorilla glass ®

Toothpaste containing biocompatible glass

Vitrification of nuclear waste

Thanks to a wide range of accessible properties

due to the low stoichiometric constrain induced by the

amorphous character

Saint Gobain research, Aubervilliers

Optical fiber

Gorilla® glass, Corning®

DE LA RECHERCHE À L'INDUSTRI

TOOLS : EXPERIMENTAL

Raman spectroscopy

Horiba Raman spectrometer

Neutron scattering

LLB, CEA Saclay

NMR

Bruker 11.7T, LSDRM, CEA Saclay

Effective Temperature controlling balance

between constraints and energetic terms (MD)

3 r_{b-0} (Å)

- The structure of Lanthanum Aluminoborate glasses has been scarcely studied ^{[1][2][3]}
 - Comparing glass structure with metaborate crystal one (B-O-B chains)
 - How is Al₂O₃ inserted in the structure?
 - \mathbb{BO}_4 is decreasing with the addition of Al_2O_3 (NMR)
 - BO₄ substituted by AIO₄ in the structure
 - Al in superstructural units (Raman)

In this study, we focus on (25La₂O₃-75B₂O₃)+15Al₂O₃

- To determine %BO_x, %AIO_x, %NBO (NMR)
- To study the connectivity between BO_x and AIO_x units (NMR)
- To obtain information on superstructural units using a new method combining neutron, NMR and MD simulation

[1] :Brow et al , Journal of the American Ceramic Society, 1997[2] : Chakraborty et al, Journal of the American Ceramic Society, 1985

[3] Pytalev et al, Journal of Alloys and compounds, 2015

Ab-initio Molecular Dynamic (aiMD)

- Start : CMD structure @ 300K
- Melt quench method
- CP2K
- Geometry optimization (cp2k)
- DFT-GIPAW : VASP


```
NUCLEAR MAGNETIC RESONANCE: MAS
```


Slide 9/20

1D MAS spectra are quantitative :

	%BO ₃	%BO ₄	%AIO ₄	%AIO ₅	%AIO ₆	%BO	%NBO
LaBAI15	76	24	53	30	17	72	28

What about connectivity ?

DE LA RECHERCHE À L'INDUSTRIE

NUCLEAR MAGNETIC RESONANCE: MQMAS

Slide 10/20

- ¹¹B : two BO₃ species
- ²⁷AI : only three Aluminum sites observed
 - ¹⁷O : one NBO site and at least two BO

ADVANCED 2D NMR: | Slide 11/20 THROUGH BOND CONNECTIVITY (J-HMQC)

BO and NBO seem to be connected at the same BO₃

Only $BØ_2O^-$: n(BO₃) ~ n(NBO)

ADVANCED 2D NMR: THROUGH BOND CONNECTIVITY (J-HMQC)

Slide 12/20

AIO₄-BO and AIO₅-BO peaks are at similar ¹⁷O NMR shift

- Suggests that both units are former
- AIO₆-BO at higher ¹⁷O NMR shift
 - Weaker bonds

Maybe a small amount of NBO on AIO_{5.6}

J-HMQC ²⁷AI{¹¹B} : J²_{AI-O-B}

ADVANCED 2D NMR: THROUGH BOND CONNECTIVITY (J-HMQC)

27**Д**

Slide 13/20

Presence of bonds BO₃-O-Al and BO₄-O-Al

Slight or no difference between different AIO_x

DE LA RECHERCHE À L'INDUSTRI

COMPARISON BETWEEN MD / EXP

- aiMD reproduces the S(Q) but not the NMR CN
- Proportions of different species are not perfectly reproduced
 - Is it possible to improve it thanks to RMC?

Slide 14/20

Constraints on $%BO_4$, $%AIO_x$ and localization of NBO

Neutron data from (DFT) optimized RMC structures

Very good agreement after geometry optimization

Neutrons are not enough discriminative

CN and NMR agreement ?

Data extracted from optimized RMC structures

DFT Optimization decreases the agreement with experimental data

- **Overestimation of AIO₅ and BO₄**
- TO ≈ 10%, rings always existing (>20% O)

HYBRID REVERSE MONTE CARLO

Simulation of NMR spectra from optimized RMC models

Slide 17/20

Oxygen-17 spectra is not sensitive to %ring

Boron-11 spectra is more sensitive but experimental spectra is not well reproduced

Constraints induced DFT non-stable environments

DE LA RECHERCHE À L'INDUSTRI

HYBRID REVERSE MONTE CARLO

Discrimination on ¹⁷O MQMAS spectra of different BO

Difficulties to observe AI-O-AI

 BO_3 ring and $\mathrm{BO}_3\text{-nAl}$ impact the NMR shift in the same way

Indicating that AI are in rings?

Slide 18/20

CONCLUSIONS

- HRMC simulation give new perspectives for models generation
- It allows to create more realistic models with conformations that are difficult to generate by MD (small rings, ...)
- The setting of simulations is not trivial (numerous parameters)
- Agreement with NMR data could be improved
 - S(Q) agreement : **OK**
 - NMR agreement : ~ OK

DFT stability of some local environments must be addressed...

Perspectives: DIRECT consideration of NMR shifts (Machine Learning)

- No more constraints based on interpretation of NMR data or on advanced experiments (CN, connectivity...)
- Flexible exploration of conformations (variable %ring)
- Improved interpretation of experimental data (based on 3D structure)

Centre de calcul recherche et technologie

<u>Acknowledgement</u>

<u>Jury</u>

Franck Fayon Simona Ispas Charlotte Martineau-Corcos Laurent Cormier Jean-Marc Delaye Daniel Caurant

Thibault Charpentier (supervisor)

Laurent Cormier (IMPMC) Daniel Caurant (LCMCP) Odile Majérus (LCMCP) Grégory Tricot (LASIR) Sylvain Cristol (UCCS) Rodolphe Pollet (LSDRM)

Ziyad Chaker (post-doc) Mélanie Moskura

All the LSDRM

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 43 38 | F. +33 (0)1 69 08 66 40

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019