Diffraction des neutrons et des rayons X

Laurent Cormier

Institut de Minéralogie et Physique des Milieux Condensés Université Pierre et Marie Curie – CNRS Paris, France

Diffusion - Diffraction

Quelques définitions

Vecteur d'onde de module $k_i = 2\pi/\lambda$ Vecteur de diffusion $\vec{Q} = \vec{k}_d - \vec{k}_i$ λ: longueur d'onde de la particuleincidente2θ : angle de diffraction

Diffusion élastique $k_i = 2\pi/\lambda = k_d = k$

 $Q = 2k\sin\theta$ $Q = 4\pi\sin\theta / \lambda$

A Q est parfois noté k (surtout en RX)

Facteur de structure dynamique

$$\frac{d^2\sigma}{d\Omega dE} = \frac{\sigma_s}{4\pi\hbar} \frac{k_i}{k_d} S(\mathbf{Q},\omega)$$

$$S(\mathbf{Q},\omega) = \frac{1}{2\pi} \int \int d\mathbf{r} dt e^{i(\mathbf{Q}\cdot\mathbf{r}-\omega t)} G(\mathbf{r},t)$$

 $G(\mathbf{r},t)$ = Fonctions de correlation de Van Hove

En diffraction des neutrons, séparation en 2 fonctions :

✓ Cohérente : $G_{coh}(\mathbf{r},t)$ = probabilité, étant donné une particule à l'origine au temps t=0, de trouver une particule à la position **r** au temps t

✓ Incohérente : $G_{incoh}(r,t)$ = probabilité, étant donné une particule à l'origine au temps t=0, de trouver cette même particule à la position r au temps t = décrit le mouvement d'une particule **Facteur de structure** $S(Q) = \int_{-\infty}^{+\infty} S(\mathbf{Q}, \omega) d\omega$

$$S(\mathbf{Q}) = \frac{1}{2\pi} \int \int d\mathbf{r} dt e^{i\mathbf{Q}\cdot\mathbf{r}} G(\mathbf{r}, t) \int_{-\infty}^{+\infty} e^{-i\omega t} d\omega \implies 2\pi \delta(t)$$

$$S(\mathbf{Q}) = \int G(\mathbf{r}, 0) e^{i\mathbf{Q}\cdot\mathbf{r}} d\mathbf{r}$$

$$G(\mathbf{r}, 0) = \delta(\mathbf{r}) + \rho_0 g(\mathbf{r})$$

$$S(\mathbf{Q}) = 1 + \rho_0 \int [g(\mathbf{r}) - 1] e^{i\mathbf{Q}\cdot\mathbf{r}} d\mathbf{r} + \rho_0 \delta(\mathbf{Q})$$

Petits angles

 ρ_0 (atome Å⁻³) est la densité atomique moyenne qui s'exprime à partir de la densité macroscopique d(g cm⁻³) :

$$\rho_{0=} \frac{1Na}{A*10^{24}} \qquad \begin{array}{c} A = ma \\ 1'échan \\ 1'échan \\ \end{array}$$

A = masse atomique de l'échantillon

 $\rho_0 g(\mathbf{r})$ mesure les fluctuations locales de densité de la fonction de distribution de paire $g(\mathbf{r})$ autour de la valeur moyenne ρ_0 $g(\mathbf{r}) =$ probabilité de trouver un atome entre \mathbf{r} et \mathbf{r} +d \mathbf{r} , s'il existe un atome à l'origine

Matériaux isotropes

Cas des amorphes, liquides ...

 \vec{Q} devient $Q = 4\pi \sin\theta/\lambda$

Système monoatomique

Système polyatomique

Formalisme de Faber-Ziman

 $g_{\alpha\beta}(r)$ et $S_{\alpha\beta}(Q)$ sont reliés par une transformée de Fourier

$$g_{\alpha\beta}(r) - 1 = \frac{1}{(2\pi)^{3}\rho_{0}} \int_{0}^{\infty} 4\pi Q^{2} \Big[S_{\alpha\beta}(Q) - 1 \Big] \frac{\sin(Qr)}{Qr} dQ$$

 $g_{\alpha\beta}(r)$ probabilité de trouver un atome β à une distance r d'un atome α

Fonctions dans l'espace réciproque

S(Q) facteur de structure F(Q)=S(Q)-1 fonction d'interférence

$$S(Q \to \infty) \to 1 \qquad S(Q) \ge 0$$
$$F(Q \to \infty) \to 0$$

D.A. Keen, *A comparison of various commonly used correlation functions for describing total scattering*, J. Appl. Cryst. 34 172-177 (2001).

Fonctions dans l'espace réel

Normalisation

Facteur de structure non-normalisé

$$F(Q) = \sum_{\alpha,\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} \Big[S_{\alpha\beta}(Q) - 1 \Big]$$
$$g(r) = \sum_{\alpha,\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} \Big[g_{\alpha\beta}(r) - 1 \Big]$$

Normalisation

Facteur de structure normalisé

Extraction d'informations de la fonction de correlation

P. Debye, *Zerstreuung von Röntgenstrahlen*, Ann. Physik., 46, 809 (1915) B.E. Warren, *X-ray diffraction*, Dover publication, New-York, (1969)

Facteur de structure en RX

$$F(Q) = \sum_{\alpha,\beta} c_{\alpha} c_{\beta} f_{\alpha}(Q) f_{\beta}(Q) \Big[S_{\alpha\beta}(Q) - 1 \Big]$$

Facteur de forme

$$S_{\alpha\beta}(Q) - 1 = 4\pi\rho_e \int_0^\infty r^2 \left[g_{\alpha\beta}(r) - 1\right] \frac{\sin(Qr)}{Qr} dr$$

Densité électronique

Fonctions de distributions de paires partielles

Facteur de structure de rayons X

$$S_X(Q) = \frac{\left[I(Q) - \overline{f^2}\right]}{\overline{f}^2}$$

I(Q) intensité mesurée

Comparaison entre diffraction des neutrons et rayons X

Facteur de structure S(Q) : somme des facteurs de structure partiels, $S_{\alpha\beta}(Q)$: $S(Q) = \sum_{\alpha,\beta \ge \alpha} W_{\alpha\beta}(Q) S_{\alpha\beta}(Q)$

Facteurs pondérants

RX

Neutrons

$$W_{\alpha\beta}(Q) = \frac{c_{\alpha}c_{\beta}f_{\alpha}(Q,E)f_{\beta}(Q,E)}{\overline{f(Q,E)}^{2}} \left(2 - \delta_{\alpha\beta}\right) \qquad \qquad W_{\alpha\beta}(Q) = \frac{c_{\alpha}c_{\beta}b_{\alpha}b_{\beta}}{\overline{b}^{2}} \left(2 - \delta_{\alpha\beta}\right)$$

Fonction de corrélation

RX

Neutrons

$$G(r) = \sum_{\alpha,\beta \ge \alpha} TF(W_{\alpha\beta}) \otimes g_{\alpha\beta}(r)$$

$$G(r) = \sum_{\alpha,\beta \ge \alpha} W_{\alpha\beta} g_{\alpha\beta}(r)$$

Fonctions de distribution de paires partielles : $g_{\alpha\beta}(\mathbf{r})$

Comparaison entre diffraction des neutrons et rayons X RX Neutrons

f(Q,E) facteur de forme

✓ variation forte de l'intensité diffractée en fonction de θ

$$\theta = 0, I = Z$$

b longueur de diffusion des neutrons

✓ b pas une fonction monotone du nombre atomique

Comparaison entre diffraction des neutrons et rayons X RX Neutrons

- f(Q,E) facteur de forme
- ✓ informations sur éléments de Z élevé
- ✓ petits échantillons
 ✓ radiation cause des dommages aux échantillons

- b longueur de diffusion des neutrons
- \checkmark b indépendante de Q = constante
- \Rightarrow atomes légers sont visibles (H, Li, N, O, etc)
- \Rightarrow possible de distinguer des éléments voisins
- ✓b varie entre différents isotopes

 \Rightarrow substitution isotopique (H/D)

Complémentarité des données de neutrons et rayons X

Données de diffraction des neutrons par le verre de silice: fonction de distribution radiale

Solide polyatomique

Q(S(Q)-1)

Fonction de corrélation

Fig.3. The experimental $ki(k) \exp(-\alpha^2 k^2)$ for SiO₂, with $\alpha = 0.056$ and $g(k) = f_e$.

Recouvrement des distributions de paires partielles $G_{\alpha\beta}(r)$

Verre SiO₂

Fig.4. The pair function distribution curves for SiO₂. A is the measured curve. The computed contributions are given by: B, Si-O; C, O-O; D, Si-Si; E, Si-2nd O; F, O-2nd O; G, Si-2nd Si.

Extraire des informations des données de diffraction : modélisations numériques

Dynamique Moléculaire classique Dynamique Moléculaire ab initio RMC et EPSR

A.C. Wright, *The comparison of molecular dynamics simulations with diffraction experiments*, J. Non-Cryst. Solids, 159, 264-268 (1993)

Extraire des informations des données de diffraction : méthodes expérimentales de contraste

Système de *n* espèces chimiques

Nombre de $S_{\alpha\beta}(Q)$ indépendant: n(n+1)/2

$$F(Q) = \sum_{\alpha,\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} \left[S_{\alpha\beta}(Q) - 1 \right] \longrightarrow$$

Il faut N= n(n+1)/2 expériences différentes !

Méthode de différence

Neutron : substitution isotopique

Rayons X : diffusion anomale

Substitution isotopique (diffraction de neutrons)

Méthode de première différence

M = élément substitué

$$F_{\exp 1}(Q) = \sum_{\alpha} c_{\alpha} b_{\alpha}^{2} + \sum_{\alpha,\beta\neq M} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} \left(S_{\alpha\beta}(Q) - 1 \right) + \sum_{M,\alpha} c_{\alpha} c_{M} b_{\alpha} b_{M1} \left(S_{M\alpha}(Q) - 1 \right)$$
Échantillon 1

$$F_{\exp 2}(Q) = \sum_{\alpha} c_{\alpha} b_{\alpha}^{2} + \sum_{\alpha,\beta\neq M} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} \left(S_{\alpha\beta}(Q) - 1 \right) + \sum_{M,\alpha} c_{\alpha} c_{M} b_{\alpha} b_{M2} \left(S_{M\alpha}(Q) - 1 \right)$$
Échantillon 2

$$\Delta F(Q) = F_{\exp 1}(Q) - F_{\exp 2}(Q)$$

$$\Delta F(Q) = \sum_{\alpha\neq M} A \left(S_{M\alpha}(Q) - 1 \right) + B \left(S_{MM}(Q) - 1 \right)$$

avec
$$A = 2c_{\alpha}c_{M}b_{\alpha}(b_{M1} - b_{M2})$$
 $B = c_{M}^{2}(b_{M1}^{2} - b_{M2}^{2})$

L. Cormier et al., *Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution*, Chem. Geol. 174, 349 (2001)

Substitution isotopique (diffraction de neutrons)

Méthode de première différence

M = élément substitué

$$F_{\exp 1}(Q) = \sum_{\alpha} c_{\alpha} b_{\alpha}^{2} + \sum_{\alpha, \beta \neq M} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} (S_{\alpha\beta}(Q) - 1) + \sum_{M, \alpha} c_{\alpha} c_{M} b_{\alpha} b_{M1} (S_{M\alpha}(Q) - 1)$$
Échantillon 1

$$F_{\exp 2}(Q) = \sum_{\alpha} c_{\alpha} b_{\alpha}^{2} + \sum_{\alpha, \beta \neq M} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} (S_{\alpha\beta}(Q) - 1) + \sum_{M, \alpha} c_{\alpha} c_{M} b_{\alpha} b_{M2} (S_{M\alpha}(Q) - 1)$$
Échantillon 2

$$\Delta F(Q) = F_{\exp 1}(Q) - F_{\exp 2}(Q)$$

$$\Delta F(Q) = \sum_{\alpha \neq M} A(S_{M\alpha}(Q) - 1) + B(S_{MM}(Q) - 1)$$

avec
$$A = 2c_{\alpha}c_{M}b_{\alpha}(b_{M1} - b_{M2})$$
 $B = c_{M}^{2}(b_{M1}^{2} - b_{M2}^{2})$

L. Cormier et al., *Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution*, Chem. Geol. 174, 349 (2001)

Pour un système binaire avec 2 espèces α, β :

 $\overline{b}^{2}[S(Q)-1] = \sum_{\alpha,\beta} c_{\alpha}c_{\beta}b_{\alpha}b_{\beta}[S_{\alpha\beta}(Q)-1]$ F(Q)

Equation matricielle

$$\begin{pmatrix} F_{\exp 1}(Q) \\ F_{\exp 2}(Q) \\ F_{\exp 3}(Q) \end{pmatrix} = \begin{pmatrix} c_{\alpha}^{2}b_{\alpha 1}^{2} & c_{\beta}^{2}b_{\beta 1}^{2} & c_{\alpha}c_{\beta}b_{\alpha 1}b_{\beta 1} \\ c_{\alpha}^{2}b_{\alpha 2}^{2} & c_{\beta}^{2}b_{\beta 2}^{2} & c_{\alpha}c_{\beta}b_{\alpha 2}b_{\beta 2} \\ c_{\alpha}^{2}b_{\alpha 3}^{2} & c_{\beta}^{2}b_{\beta 3}^{2} & c_{\alpha}c_{\beta}b_{\alpha 3}b_{\beta 3} \end{pmatrix} \begin{pmatrix} F_{\alpha\alpha}(Q) \\ F_{\beta\beta}(Q) \\ F_{\beta\beta}(Q) \\ F_{\alpha\beta}(Q) \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} F_{\alpha\alpha}(Q) \\ F_{\beta\beta}(Q) \\ F_{\alpha\beta}(Q) \end{pmatrix}$$

Composition fixe: constantes c_{α} , c_{β}

Isotopes avec un bon contraste $b_{\alpha i}$: longueur de diffusion de l'isotope *i* de l'espèce α

L'inversion permet de déterminer les facteurs de structure partiels $S_{ab}(Q)$:

$$\begin{bmatrix} F_{\exp}(Q) \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} F_{\alpha\beta}(Q) \end{bmatrix}$$
$$\begin{bmatrix} F_{\alpha\beta}(Q) \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} F_{\exp}(Q) \end{bmatrix}$$

Possibilité de faire substitution isomorphique :

Deux éléments chimiques différents avec rayon ionique similaire (même place dans la structure ?) mais b différent

Substitution isotopique (diffraction de neutrons)

Données de diffraction des neutrons: distribution radiale partielle

Diffusion anomale (diffraction des rayons X)

f' et f" varient fortement

Facteur de diffusion atomique : $f(Q,E) = f_0(Q) + f'(Q,E) + i f''(Q,E)$

Diffusion anomale (diffraction des rayons X)

2 expériences à 2 énergies (λ) différentes : au seuil d'absorption (λ1 ou λ2) et loin du seuil (λ3)

Energie des rayons X (eV)

1 seul échantillon est nécessaire

Δ Domaine en Q définie par Q = $4 \pi \sin\theta / \lambda$ En pratique, intéressant pour des éléments au dessus de ~Fe sinon domaine en Q trop faible

Bibliographie

Squires, G. L. *Introduction to the theory of thermal neutron scattering*, Cambridge University Press: Cambridge (1978).

A.C. Wright, *The structure of amorphous solids by x-ray and neutron diffraction*, Advances in Structure Research by Diffraction Methods 5, 1 (1974).

Chieux, P. In *Neutron diffraction*, Dachs, H., Ed., Springer-Verlag: Berlin, (1978).

L. Cormier, *La structure des verres étudiée par diffraction des neutrons*, J. Phys. IV, 111, 187-210 (2003).

H. E. Fischer, A. C. Barnes, P. S. Salmon, *Neutron and x-ray diffraction studies of liquids and glasses*, Reports on Progress in Physics 69, 233-299 (2006).