

Institut Matériaux Microélectronique Nanosciences Provence

### **Diffusion dans les verres**

**Dominique Mangelinck** 

#### 4ème atelier thermodynamique des verres 2019 du GDR TherMatHT- USTV

11 octobre 2019, Marcoule







#### References

#### Books & Databases

- Y. Adda and J. Philibert, La Diffusion dans les Solides (PUF, 1966)
- J. Philibert, Diffusion et transport de matiére dans les solides, (Ed. Phys., 1990)
- H. Mehrer, Diffusion in solids, (Springer, 2007)
- D.A. Porter K.E. Easterling, Phase Transformations in Metals and Alloys, 2004
- Handbook of Solid State Diffusion, Eds A. Paul & S. Divinsky, 2017
- Landolt Bornstein III-33, Diffusion in SC and non-metallic solids (Springer, 1998)

Review

. . .

- Chakraborty, Diffusion in silicate melts, Rev. Mineral. Geochem. 1995
- Faupel et al, Diffusion in Metallic Glasses and Supercooled Melts, Rev. Mod. Phys. 2003
- Mehrer, Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses, Diffus. Found. 2015
- ...
- **PhD thesis** 
  - H. Pablo, Diffusion chimique dans les verres borosilicates d'intérêt nucléaire, 2017.
  - C. Claireaux, Mobilité atomique dans les silicates vitreux et fondus, 2014.

#### **Diffusion dans les verres**

#### Rappel de diffusion

Diffusion dans les verres métalliques

Diffusion dans les verres d'oxydes

Diffusion chimique dans les verres d'oxydes.

D. Mangelinck, Atelier thermodynamique des verres, 11 octobre 2019, Marcoule

#### **Diffusion: a little bit of history**

1 - " The law " - A. Fick - 1855 Salt in water (Phil. Mag. 10 (1855) 30) " It was quite natural to suppose that this law for the diffusion of salt in its solvent must be identical with that according to which the diffusion of heat in a conducting body takes place; upon this law Fourier founded his celebrated theory of heat, and it is the same which Ohm applied with such extraordinary success to the diffusion of electricity in a conductor "

2 - " Solids diffuse in solids "
W. C. Roberts-Austen - 1889
Fe can be carburized by diamond in vacuum at low temp. (Nature 41 (1899) 14)
" and I can measure it "
Au in Pb Phil. Trans. Roy. Soc. A187 (1896) 383
" The following experiment constitutes so far as I am aware the first attempt to actually measure the diffusivity of one solid metal in another "

3 - "Radioactive tracers " G. He

G. Hevesy - 1921

<sup>210</sup>Pb in Pb J. Groh and G. v Hevesy Ann. Phys. 65 (1921) 216



### Fick's first law of diffusion

 Fick proposed a relationship of diffusion of matter similar to Fourier's equation for heat. He proposed that the flux of particles is proportional to the gradient in concentration of particles. In one dimension this is written:

$$j = -D\frac{dc}{dx}$$

- The flux density j of particles has units e.g. #/(cm<sup>2</sup>s) or mol/(cm<sup>2</sup>s)
- The concentration is given in e.g. #/cm<sup>3</sup> or mol/cm<sup>3</sup>
- The diffusion coefficient (or diffusion constant) then has units cm<sup>2</sup>/s
- The minus sign states that the flux goes *down* the concentration gradient. The negative of the concentration gradient may be taken as the driving force.





# Fick's first law of diffusion - comments

$$j = -D\frac{dc}{dx}$$

- Fick's first law is a phenomenological or empirical expression; It describes a flux in terms of a concentration gradient and a proportionality coefficient – the diffusion constant, or diffusivity.
- However, Fick's first law applies strictly only to neutral non-interacting particles. Examples comprise dilute solutions of interstitial atoms, e.g. atomic H in metals.
- For other situations, the coefficient in Fick's first law is not a constant.
- D in Fick's first law has not been given any physical meaning up to now.
   In the next, we will give it more content.
- Fick's law is useful because, in experiments, it is easier to determine the composition

#### **Diffusion: how atoms can move in a cristal ?**

#### Because of point defects

(lattice perturbation with a size in the order of the atomic volume)

Atoms oscillate around a given lattice site of minimum energy (mean vibration energy ~ 3kT) but their movement is limited by their neighbors except if a vacant site exist in their vicinity



The diffusion rate depends on the jump frequency and the vacancy concentration If the solute atoms are smaller than the atoms of the matrix, they can use interstitial sites



Diffusion rate depends only on the jump frequency

### **Point defects: examples**



(1) Vacancy  $\Rightarrow$  V

- (2) Self-interstitial  $\Rightarrow$  I
- (3) Interstitial impurity  $\Rightarrow A_i$
- (4), (5) substitutional impurity  $\Rightarrow A_s$

Arrows show the local stress introduced by the point defects

#### Diffusion – Thermally Activated Process (I)

In order for atom to jump into a vacancy site, it needs to posses enough energy (thermal energy) to to break the bonds and squeeze through its neighbors. The energy necessary for motion,  $E_m$ , is called **the activation energy** for vacancy motion.



Schematic representation of the diffusion of an atom from its original position into a vacant lattice site. At activation energy  $E_m$  has to be supplied to the atom so that it could break inter-atomic bonds and to move into the new position.

$$D_{d} = \beta \Gamma a^{2} = \beta a^{2} v_{0} \exp\left[-\frac{\Delta G_{m}}{kT}\right]$$

$$D_{d} = \beta a^{2} v_{0} \exp\left(\frac{\Delta S_{m}}{k}\right) \exp\left[-\frac{E_{m}}{kT}\right]$$

$$D_{d} = D_{0} \exp\left[-\frac{E_{m}}{kT}\right]$$

$$\beta \text{: geometrical factor}$$

$$a: \text{ jump distance}$$

$$v_{0} \text{: attempt frequency (~10^{13} \text{ s}^{-1})}$$

$$\Delta G_{m} \text{: free enthalpy of migration}$$

$$E_{m} \text{: migration energy}$$

$$D_{0} \sim 10^{-2} \text{ cm}^{2} \text{ s}^{-1}$$
Diffusion assisted by defect
$$D = p_{d} D_{d} \quad p_{d} \text{= probability of defect}$$

$$p_{d} = \frac{n_{d}}{N} = C_{d} = \exp\left[-\frac{E_{f}}{kT}\right]$$

$$D = D_{0} \exp\left[-\frac{E_{f} + E_{m}}{kT}\right]$$

# Variation with temperature

$$D = n_d \Gamma a^2$$

$$n_d = p_d = c_d = c_0 \exp\left(-\frac{\Delta H_f}{kT}\right)$$

$$\Gamma = v_0 \exp\left(-\frac{\Delta H_m}{kT}\right)$$

$$D = D_0 \exp\left(-\frac{\Delta H}{kT}\right)$$

 $\Delta H = \Delta H_f + \Delta H_m (= Q \text{ activation energy})$  $\Delta H_f = \text{enthalpy of formation of the defect}$  $\Delta H_m = \text{enthalpy of migration of the defect}$ 

> pure Interstitial:  $\Delta H = \Delta H_m$ Vacancy:  $\Delta H = \Delta H_m + \Delta H_f$



# Correlation

#### Auto diffusion:

**Tracer diffusion:**  $D^* = f D = f C_d D_d$ 

 $D = C_d D_d$ 

f = correlation factor

f=1 for interstitial mechanism

 f<1 if diffusion vehicle: vacancy, divacancy, self-interstitiel

f: complex function of T and C for alloys
 → Nastar et al , Phil. Mag. 2000

| Lattice                    | Mechanism                                    | Correlation factor $\boldsymbol{f}$ |
|----------------------------|----------------------------------------------|-------------------------------------|
| 1d chain                   | vacancy                                      | 0                                   |
| honeycomb                  | vacancy                                      | 1/3                                 |
| 2d-square                  | vacancy                                      | 0.467                               |
| 2d hexagonal               | vacancy                                      | 0.56006                             |
| diamond                    | vacancy                                      | 1/2                                 |
| simple cubic               | vacancy                                      | 0.6531                              |
| bcc cubic                  | vacancy                                      | 0.7272, (0.72149)                   |
| fcc cubic                  | vacancy                                      | 0.7815                              |
| fcc cubic                  | divacancy                                    | 0.4579                              |
| bcc cubic                  | divacancy                                    | 0.335 to $0.469$                    |
| fcc cubic                  | $\langle 100 \rangle$ dumb-bell interstitial | 0.4395                              |
| any lattice                | direct interstital                           | 1                                   |
| diamond                    | colinear interstitialcy                      | 0.727                               |
| $\operatorname{CaF}_2(F)$  | non-colinear interstitialcy                  | 0.9855                              |
| $\operatorname{CaF}_2(Ca)$ | colinear interstitialcy                      | 4/5                                 |
| $CaF_{a}(Ca)$              | non-colinear interstitialcy                  | 1                                   |

 Table 7.2. Correlation factors of self-diffusion in several lattices



Fig. 3.7 Schematic depicting correlation effect for diffusion in a 2-D hexagonal lattice. After the atom at 1 exchanges with the vacancy at 7, there is a finite probability that the next jump will return the atom to its original position. If the atom is chemically indistinguishable from the host lattice atoms, as for a tracer atom, this probability is 1/6 in this lattice.

# **Diffusion: atomistic approach**

 $D = p_d \Gamma a^2$ 

a: jump distance

p: probability to find a defect

 $\Gamma$ : jump rate

Everything which affects  $\Gamma$  and p will affect D

The mass transport is characterized by the flux

Quantity of atoms which pass a surface unit in unit of time

Nernst Einstein relation:

$$J = \frac{CD}{kT}F$$



# **Diffusion flux, mobility, Onsager**

J (at  $s^{-1}$ ): particle flux = number of particles that are going through a surface unit (section) per time unit

- J = CMF = LFJ proportional to the number of particles (C) and to their mobility (M) or J proportional to L (Onsager coefficient)
  - C: particle concentration in the matrix, F: driving force

 $D = Mk_BT$ M: mobility of uncharged particles in a given matrix, 1/M: friction coefficient,  $v=M \times F$  = particles' velocity (m s<sup>-1</sup>)  $D = \frac{L k_B T}{C}$ D (m<sup>2</sup> s<sup>-1</sup>): diffusion coefficient

*If several mechanisms and/or diffusion paths* with different mobility:

 $J_i = \sum_{k} C_k M_k F_k$  k: mechanisms, paths

 $J = \frac{CD}{kT}F$ 

If several components (elements, vacancy...), Onsager equations:

$$J_i = \sum_j L_{ij} F_j$$
 j: components

## **Driving force: an example**



Down hill "classical" diffusion

**Up-hill diffusion** (spinodal decomposition)

Chemical diffusion in binary system

# **Diffusion flux and diffusion equation**

Driving force = minimum chemical potential  $\Rightarrow F = -\frac{d\mu}{dx}$ 

"-"  $\Rightarrow$  atoms diffuse in the direction of decreasing chemical potential

 $J = -\frac{CD}{k_{P}T}\frac{d\mu}{dx}$  Nernst-Einstein equation Thermodynamics  $J = -\frac{CD}{kT}\frac{\partial}{\partial x}\left(kT\ln(\gamma C)\right) = -D\left(\frac{\partial C}{\partial x}\left(1 + \frac{\partial\ln\gamma}{\partial\ln C}\right)\right) = -D\Phi\Phi\frac{\partial C}{\partial x}$ **Kinetics** 

 $\Phi$  is called the thermodynamic factor solution

 $D_i = \Phi D$  is the intrinsic diffusion coefficient

Assuming D = constant and an ideal solution (or non-ideal diluted solution)  $\Rightarrow \gamma = 1, \mu = k_B T \ln(C)$ 

 $\frac{dC}{dt} = D \frac{d^2C}{dr^2}$  Fick's equation = random motion diffusion depends only on concentration

If the composition is constant  $\Rightarrow \gamma = 1$ ,  $\mu = k_B T \ln(C)$ 

#### **Defects in oxides: Kröger-Vink notation**

#### **Schottky and Frenkel Defects:**

Schottky defect : vacancies on both cation and anion sublattices. Because mass, site, and charge numbers remain balanced, these vacancies are always in stoichiometric ratio. Loss of ions within crystal lattice: density of the solid decreases. Frenkel defect : vacancy on either cation or anion sub-lattice along with an interstitial site. Frenkel defect pairs maintain a balanced mass, site, and charge stoichiometric ratio. Since ions remain withinin the lattice, the density remains the same.

#### Kröger-Vink Notation: $M_{s}^{c}$



**M** corresponds to the **species**, which can be ions (Na, Ag, O, Cl...), vacancies V, electrons e and electron holes h.

**S** indicates the lattice **site** that the species occupies. For instance, Au might occupy a Cu site. The site may also be a lattice interstice, in this case the symbol  $\langle i \rangle$  is used.

**C** corresponds to the **charge** of the species relative to the occupied site. To indicate zero charge, x is sometimes used. • indicates a positive charge, while ' signifies a negative charge.

**Defect reactions:** imperative to keep mass, site, and charge balance in each reaction (mass conservation and electroneutrality).



Schottky disorder in NaCl



Frenkel disorder in AgCl

#### **Nernst-Einstein equation for charged particules**

General transport equation:

linear relation between flux J and driving force, gradient of electrochemical potential  $\eta$ , both chemical ( $\mu$ ) and electrical ( $\phi$ ) potentials can act as driving forces (L: Onsager coefficient):

$$J = -L\nabla \eta = -L\nabla \mu - LF_a \nabla \phi$$

Uncharged species: only chemical potential term relevant, process reduced to pure diffusion:

$$J = -L\nabla\mu = -\frac{d^2 - d}{c}\nabla c$$
  
Comparison with Fick's first law permits to identify:

Conversely, if no noticeable chemical potential variation: electrical field remains only driving force.  
Fulfilled for solids with high charge carrier concentrations:  
metals, fast ion conductors, highly doped systems! 
$$J = -LF_a \nabla \phi$$

RTL

Converting the particle flux into a current density:

$$\sigma = LF_a^2 = F_a^2 \frac{Dc}{RT}$$

Electrical conductivity  $\sigma$ : F<sub>a</sub> Faraday constant (96500 C/mol), *u* mobility, *c* concentration

$$\sigma = F_a uc$$

**Nernst-Einstein equation** between diffusion coefficient and mobility (in cm<sup>2</sup>.s<sup>-1</sup>V<sup>-1</sup>):  $\mathcal{U}$ 

$$L = \frac{Dc}{RT}$$

$$i = FJ = -LF_a^2 \nabla \phi$$

$$=\frac{F_a D}{RT}$$

#### **Definition of various diffusion coefficients**

1. Composition is constant

Self-diffusion coefficient: D<sub>A</sub>

*Tracer diffusion* coefficient: D<sub>A</sub>\*

Correlation coefficient: f (Z: coordination number)

**Defect diffusion** coefficient:  $D_d$  ([d]: molar fraction of defects)  $D_A = \sum D_d [d]$ 

#### 2. Composition changes (chemical diffusion)

Intrinsic diffusion coefficient: D<sub>A.AB</sub>

Chemical diffusion (interdiffusion) coefficient: Ď Darken equation:

Integrated diffusion coefficient (Wagner, Van Loo)

#### **3.** Ionic systems (ceramics)

Ambipolar diffusion: transport limited by the slower component (electroneutrality)

In oxides with predominant electronic conduction (transference number:  $t_{el} >>> t_A$ ):  $D = t_{el} \cdot D_A \cdot \Phi$ 

 $D_{A,AB} = D_A \cdot \Phi$ 

$$\check{D} = x_A . D_{B,AB} + x_B . D_{A,AB}$$

$$\widetilde{D}_{\rm int}^{\beta} = \int_{N_B^{\beta_1}}^{N_B^{\beta_2}} \widetilde{D} dN_B$$

$$D_A = f \cdot D_A$$
$$f \approx 1 - \frac{2}{Z}$$

#### **Diffusion dans les verres**

#### Rappel de diffusion

#### Diffusion dans les verres métalliques

#### Diffusion dans les verres d'oxydes

Diffusion chimique dans les verres d'oxydes.

D. Mangelinck, Atelier thermodynamique des verres, 11 octobre 2019, Marcoule

#### **Fabrication of a glass**

Glass = metastable phase



imans

## **Different types of glasses [Mehrer 2007]**

- Vitreous silica (S = SiO<sub>2</sub>)
- Soda-Lime Silicate Glasses (NCS =  $Na_2O$ -CaO-SiO<sub>2</sub>).
- **Borosilicate Glasses (BS** =  $SiO_2 B_2O_3 ...$ )
- Lead Silicate Glasses (PbO SiO<sub>2</sub>)
- Aluminosilicate Glasses (AS = SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub>)
- Non-Silica-Based Glasses (B<sub>2</sub>O<sub>3</sub>- and P<sub>2</sub>O<sub>5</sub>-)
- Amorphous Semiconductors (Si, Ge, P, As, tetrahedral glasses).
- Metallic glasses ( $Pd_{80}Si_{20}$ ,  $Ni_{80}P_{20}$ , and  $Fe_{40}Ni_{40}P_{14}B_6$ )
- Bulk metallic glasses (Zr-Ti-Cu-Ni-Be, Pd<sub>43</sub>Cu<sub>27</sub>Ni<sub>10</sub>P<sub>20</sub>)
- Bulk amorphous steels
- Organic Glasses
- Natural Glasses (obsidian, fulgarites, impactites)



Structure of a binary metallic glass



Structure of a soda-lime silicate glass

## Different types of glasses [Mehrer 2007]

- Vitreous silica (S = SiO<sub>2</sub>)
- Soda-Lime Silicate Glasses (NCS =  $Na_2O-CaO-SiO_2$ ).
- **Borosilicate Glasses (BS** =  $SiO_2 B_2O_3 ...$ )
- Lead Silicate Glasses (PbO SiO<sub>2</sub>)
- Aluminosilicate Glasses (AS =  $SiO_2 Al_2O_3$ )
- Non-Silica-Based Glasses (B<sub>2</sub>O<sub>3</sub>- and P<sub>2</sub>O<sub>5</sub>-)
- Amorphous Semiconductors (Si, Ge, P, As, tetrahedral glasses).
- Metallic glasses ( $Pd_{80}Si_{20}$ ,  $Ni_{80}P_{20}$ , and  $Fe_{40}Ni_{40}P_{14}B_6$ )
- Bulk metallic glasses (Zr-Ti-Cu-Ni-Be, Pd<sub>43</sub>Cu<sub>27</sub>Ni<sub>10</sub>P<sub>20</sub>)
- Bulk amorphous steels
- Organic Glasses
- Natural Glasses (obsidian, fulgarites, impactites)



Structure of a binary metallic glass



Structure of a soda-lime silicate glass

#### **Stability of a glass**

Diffusion experiment = heat treatment = evolution of glass



undercooled liquid state are indicated.

### **Questions about diffusion in glasses ?**

- Different behaviours below and above Tg?
- Liquid or solid behaviour?
- Same behaviour for metallic glasses and oxide glasses ? For all glasses?
- Same behaviour for the different constituting elements?
- Arrhenius behaviour?
- Type of defects?



Structure of a binary metallic glass



Structure of a soda-lime silicate glass

#### **Difficulties in measuring diffusion**

Difficulties [Chakraborty 1995, Pablo 2017, Claireaux 2014] :

- Sample preparation: bubles, shape, fragility...
- Handling
- Structural relaxation
- Convection



Relationship between thermal history and glass transition [Chakraborty 1995]

#### **Diffusion in metallic glass : effect of relaxation**



 $\rightarrow$  The diffusivity changes with time  $\rightarrow$  D<sub>relaxed</sub> (D<sub>R</sub>)

#### Arrhenius behavior in relaxed glasses

Arrhenius-type temperature dependence for structurally relaxed glassy state ?

$$D_R = D^0 exp\left(-\frac{\Delta H}{k_B T}\right)$$

- narrow height distribution of jump barriers in the disordered structure of an amorphous alloy?

- compensation effects between site and saddle-point disorder?

- Collectivity of the atomtransport mechanism leading to an averaging of disorder effects in the atomic migration process



Arrhenius diagram of self- and impurity diffusion in relaxed metal-metalloid and metal-metal type conventional metallic glasses [Faupel et al. 2003]

#### → Arrhenius behavior in most cases (up to 8 order of magnitude)

#### **Diffusion in unrelaxed glasses**

- Two different Arrhenius variation below and above a 'kink temperature'.
- Higher activation enthalpies and pre-exponential factors in the supercooled liquid state than below the kink temperature.
- Higher kink temperatures separating the glassy and the supercooled region for faster diffusing elements in the amorphous state



Arrhenius diagram of tracer diffusion of Be, B, Fe, Co, Ni, Hf in the bulk metallic glass Zr<sub>46.75</sub>Ti<sub>8.25</sub>Cu<sub>7.5</sub>Ni<sub>10</sub>Be<sub>27.5</sub> (Vitreloy4) [Faupel et al. 2003]



# **Relaxation and diffusion**

Difference between as cast and preannealed samples below Tg

- Sufficiently long annealing times → relaxation into the supercooled liquid state
- Below the calorimetric glass-transition temperature the diffusivities obtained after extended pre-annealing are smaller than those of the as-cast material
- In the high-temperature region the diffusivities of the as-cast and the pre-annealed material coincide.
- Furthermore, the diffusivities in the relaxed material can be described by one Arrhenius equation, which also fits the high-temperature data of the as-cast material.

 $\rightarrow$  the kink in the temperature dependence of the diffusivity is not related to a change in the diffusion mechanism but depends on the thermal history of the material. It is caused by incomplete relaxation to the state of the undercooled liquid.



Arrhenius diagram of tracer diffusion of B and Fe in Zr<sub>46.75</sub>Ti<sub>8.25</sub>Cu<sub>7.5</sub>Ni<sub>10</sub>Be<sub>27.5</sub> (Vitreloy4). Open symbols: as-cast material; filled symbols: pre-annealed material [Faupel et al. 2003]



Schematic illustration of structural relaxation in the V-T (or H-T) diagram of a glass-forming material

#### Correlation between $D_0$ and $\Delta H$

 The experimental values of D<sub>0</sub> and ΔH have been found to obey the following correlation "Meyer-Neldel rule":

$$D_0 = A \, exp\left(\frac{\Delta H}{B}\right)$$

- Also valid for self- and impurity diffusion in crystalline metals and alloys involving both interstitial and substitutional diffusion
- Very different values for A and B for crystalline (A  $\approx 10^{-7}$  m<sup>2</sup> s<sup>-1</sup>, B  $\approx 0.41$  eV) and amorphous metals A  $\approx 10^{-19}$  -  $10^{-20}$ m<sup>2</sup> s<sup>-1</sup>, B  $\approx 0.055$  eV.



Correlation between  $D_0$  and  $\Delta H$  for amorphous and crystalline metals. Solid line=conventional metallic glasses; dotted line=bulk metallic glasses; dashed line=crystalline metals [Faupel et al. 2003]

→ different mechanism for metallic glasses and for the interstitial or vacancy mechanisms operating in crystals.

#### **Pressure Dependence**

- Pressure dependence of diffusion → activation volumes → diffusion mechanisms of crystalline solids.
- Intersitial diffusion :  $V^{act} = V^F \approx 0.1\Omega$
- Defect-mediated diffusion
  - Activation volume = sum of the formation and migration volumes of the vacancy:  $V^{act} = V^F + V^M$
  - Typical values of  $\Delta V$  for vacancy between 0.5  $\Omega$  and 1  $\Omega$  (=atomic volume)



Pressure dependence of <sup>198</sup>Au diffusion in Au single crystals at constant temperature.  $\Omega$  = atomic volume of Au [Mehrer 2007]

$$D = D^0 \exp\left(\frac{-\Delta G}{k_B T}\right)$$

 $\Delta G$  = Gibbs energy of activation  $D^0$  = pre-factor without the entropy term.

$$\Delta G = \Delta H - T\Delta S = \Delta E + p\Delta V - T\Delta S$$

 $\Delta H$  = activation enthalpy of diffusion,  $\Delta S$  =activation entropy,  $\Delta V$  =activation volume,  $\Delta E$  = activation energy.

$$\Delta V = \left(\frac{\partial \Delta H}{\partial p}\right)_T \qquad \Delta H = \Delta E + p\Delta V$$
$$D = D_0 \exp\left(\frac{-(\Delta E + p\Delta V)}{k_B T}\right)$$
$$D_0 = D^0 \exp(\Delta S/k_B)$$

For single-jump diffusion in a crystalline solid

$$V^{act} = \Delta V = -k_B T \left(\frac{\partial \ln D}{\partial p}\right) + k_B T \left(\frac{\partial \ln(fga^2\nu_0)}{\partial p}\right)_T$$
$$V^{act} \approx -k_B T \left(\frac{\partial \ln D}{\partial p}\right)$$

#### **Pressure Dependence in metallic glasses**

Two categories for pressure dependence of diffusion in metallic glasses

- Systems with almost no pressure dependence: activation volumes close to zero
  - ion volumes c... for metallic glasses, which mainly come. late transition elements and for tracers of ior size as the majority component. •
  - ٠
  - diffusion mechanism without formation of . a defect.
- Systems with significant pressure dependence: activation volumes comparable to those of vacancy-mediated diffusion in crystalline solids
  - for Zr-rich Co-Zr and Ni-Zr metallic • glasses.
  - formation of diffusion mediating defects • which are delocalized?
  - molecular dynamics simulations for Ni-Zr • glasses = diffusion by thermally activated collective motion of chains of atoms

 $\rightarrow$  migration volume of chainlike motion with a significant activation volume?



Pressure dependence of Co diffusion in Co<sub>81</sub>Zr<sub>19</sub> at 563K. The dashed line would corresponds to an activation volume of one atomic volume [Faupel et al. 2003]



#### **Isotope effect**

Isotope effect measurements  $\rightarrow$  atomic mechanisms of diffusion in crystals



#### **Isotope effect**

Mechanism with n atoms moving collectively during one jump event

$$m_{i1} \to (n-1)m + m_{i1}$$
$$\frac{\nu_{i1}^0}{\nu_{i2}^0} \approx \sqrt{\frac{(n-1)m + m_{i2}}{(n-1)m + m_{i1}}}$$
$$E = \frac{(D_{i1}^* - D_{i2}^*)/D_{i2}^*}{\sqrt{((n-1)m + m_{i2})/((n-1)m + m_{i1})} - 1}$$

Almost vanishing isotope effects for Co diffusion in various relaxed, conventional metallic glasses.

→ Small isotope effects → strong dilution of the mass dependence of diffusion due to the participation of a large number of atoms in a collective diffusion process.

 $\rightarrow$  Small isotope effect also for the deeply undercooled liquid state of bulk metallic glasses.

 $\rightarrow$  Collective nature of diffusion processes in metallic glasses

→No change in diffusion mechanism at the calorimetric glass transition.



Isotope effect parameter as function of temperature for Co diffusion in bulk metallic glasses [Faupel et al. 2003]

E for as-cast metallic glasses ~ E for crystalline metals

 $\rightarrow$  excess volume quenched-in from the liquid state

 $\rightarrow$  quenched-in quasi-vacancies in unrelaxed glasses = diffusion vehicles during anneal

#### **Atomic Mechanisms**

- Experiments and computer simulations → different diffusion mechanisms in metallic glasses and in crystals.
- High temperature = liquid-like viscous flow via atomic collisions
- Low temperature= thermally activated transport characteristics of solids.
- Simulation and theory → change-over occurs at a critical temperature T<sub>c</sub>.
  - Well above T<sub>c</sub>:
    - collective motion of chains and rings of atoms.
    - Vogel-Fulcher-Tammann type temperature dependence (downward curvature):

$$\eta = \eta_0 exp\left(\frac{B}{T - T_0}\right)$$

- Below T<sub>C</sub>, but well above Tg (calorimetric glass temperature):
  - linear Arrhenius behavior: limited temperature range of the experiment)... Mainly chain-like displacements of atoms have been observed in molecular dynamics simulations.

→ molecular dynamics simulations: Collective atomic motion in a chain-like manner leads to total displacements of the order of one nearest-neighbour distance displacement chains typically involve 10 to 20 atoms, where each atom moves only a small fraction of the nearest-neighbour distance



Chain-like collective motion of atoms in a Co-Zr metallic glass according to molecular dynamics simulations by Teichler [Faupel et al. 2003]



Tracer diffusion coefficients of P and Co in comparison with viscosity diffusion coefficients of the alloy Pd<sub>43</sub>Cu<sub>27</sub>Ni<sub>10</sub>P<sub>20</sub> [Mehrer 2007]

#### **Diffusion dans les verres**

#### Rappel de diffusion

#### Diffusion dans les verres métalliques

#### Diffusion dans les verres d'oxydes

Diffusion chimique dans les verres d'oxydes.

D. Mangelinck, Atelier thermodynamique des verres, 11 octobre 2019, Marcoule

# Different types of glasses [Mehrer 2007]

- Vitreous silica (S = SiO<sub>2</sub>)
- Soda-Lime Silicate Glasses (NCS =  $Na_2O-CaO-SiO_2$ ).
- Borosilicate Glasses (BS =  $SiO_2 B_2O_3 ...$ )
- Lead Silicate Glasses (PbO SiO<sub>2</sub>)
- Aluminosilicate Glasses (AS =  $SiO_2 Al_2O_3$ )
- Non-Silica-Based Glasses (B<sub>2</sub>O<sub>3</sub>- and P<sub>2</sub>O<sub>5</sub>-)
- Amorphous Semiconductors (Si, Ge, P, As, tetrahedral glasses).
- Metallic glasses ( $Pd_{80}Si_{20}$ ,  $Ni_{80}P_{20}$ , and  $Fe_{40}Ni_{40}P_{14}B_6$ )
- Bulk metallic glasses (Zr-Ti-Cu-Ni-Be, Pd<sub>43</sub>Cu<sub>27</sub>Ni<sub>10</sub>P<sub>20</sub>)
- Bulk amorphous steels
- Organic Glasses
- Natural Glasses (obsidian, fulgarites, impactites)



Structure of a binary metallic glass



Structure of a soda-lime silicate glass



Diffusion in vitreous silica and in quartz [Mehrer 2007]

#### Diffusion in oxyde: overview

Diffusion coefficients: 13 orders of magnitude

Activation energy: 0.5-8 eV

Different structures, Different defects, different mechanisms





### **Diffusion in oxide glasses**

#### Five behaviors [Chakraborty 1995]:

- Alkali ions
  - Fastest diffusion
  - Simplest behavior.
  - Weak dependence on composition at high T.
  - Mixed alkali effect → decrease of D for intermediate composition of alkali
- Network modifiers other than alkalies :
  - D similar for different cations
  - D decreases with increasing silica content
  - Mixed cation effect
- Network forming cations (Si):
  - Slowest diffusion
  - Scale with viscosity
  - Strong effect of impurities
- Anions (O):
  - Bridging oxygen, non-bridging oxygen, dissolved molecular oxygen → different behavior
- Chemical diffusion :
  - Uphill diffusion (effective binary D)
  - depend on composition (more strongly than tracers)
  - Modification of network → D of network former



Diffusion in vitreous silica and in quartz [Mehrer 2007]

| Network-former ions | Network-modifier ions | Intermediate ions |
|---------------------|-----------------------|-------------------|
| Si, Ge, B, P, Sb    | Li, Na, K, Rb, Cs     | Al, Bi, Mo, S     |
| As, In, Tl          | Ca, Ba, Pb, Sn        | Se, Te, V, W      |

### **Diffusion of network former and viscosity**

- Relation between viscosity and diffusion
- Eyring model

$$D_{\eta} = \frac{k_B T}{\eta \lambda} \qquad D_{\eta} = \frac{k_B T}{\eta \lambda}$$

- η = viscosity
- λ = distance between two O or two Si





The Eyring relationship for silicate melts: The inverse correlation of viscosity (n) and oxygen dilfusivity (D) for the jadeite and diopside melts. The dashed line E is the relationship predicted by the Eyring equation with h = 2.8 A (diameter of oxygen ion). [Shimizu & Kushiro, 1984]

MD simulation of Si diffusion [Kubicki et al 1993]

#### Mobility of network formers controls the viscosity

#### **Ionic conduction**

• The dc conductivity  $\sigma_{DC}$  is related to the diffusivity of charged particles (also called charge diffusion coefficient or charge diffusivity),  $D_{\sigma}$ , via the Nernst-Einstein relation:

$$D_{\sigma} = \frac{\sigma_{DC} k_B T}{N_{ion} q^2} \propto \sigma_{DC} T$$

• *N<sub>ion</sub>* = number density of mobile ions,

• q = charge of ions

- $D_{\eta}$  from the Stokes-Einstein relation using the ionic radius of Si (0.042 nm) and the measured viscosity (Vogel-Fulcher-Tammann behavior).
- At Tg, Ca diffusion < 6 orders of magnitude of Na diffusion → divalent Ca ions = much stronger linkage to the network than Na ions.
- Same activation enthalpy for conductivity diffusion and Na tracer diffusion



Viscosity diffusion coefficient,  $D_{\eta}$ , tracer diffusivities, $D_{Na}^*$ ,  $D_{Ca}^*$ , and charge diffusion coefficient  $D_{\sigma}$ , of soda-lime silicate glass [Mehrer 2007]

 $\rightarrow$  the electrical conductivity of soda-lime silicate (NCS) glasses is due to the motion of Na ions.

#### **Conduction and viscosity**

- In the supercooled liquid field: difference in the elementary transport mechanisms involved by the viscous and ionic fluxes. The mobility of sodium is poorly coupled to the viscous flow.
- In the liquid, the relaxation times of the ionic conductivity and the viscosity tend towards a single value, which tends to show that at very high temperatures all the mechanisms adopt the same kinetics.

More details → Chakraborty 1995, Pablo 2017...



Evolution of relaxation times of viscosity  $(\tau_{\eta})$ , conductivity  $(\tau_{\sigma})$  and NMR  $(\tau_{c})$  with temperature. [Pablo 2017]



#### Haven ratio

 Haven ratio based on the assumption that only Na ions are mobile:

$$H_R = \frac{D_{Na}^*}{D_{\sigma}}$$

- Haven ratios (H<sub>R</sub> = 0.45 and 0.33) for the two soda-lime glasses are temperature-independent → the mechanism of Na diffusion does not change with temperature.
- Haven ratio < 1 <=> mobility of sodium is correlated with the ones of the other elements
- Decrease of the Haven ratio with temperature of Rubidium borate glass = increase of the number of ions that participate in the collective jump events of ionic motion.



Haven ratios for  $0.2Na_2O \ 0.8B_2O_3$  (upper line) and  $0.2Rb_2O \ 0.8B_2O_3$  (lower line) glasses as functions of reciprocal temperature [Mehrer et al 2016]

#### **Conductivity and concentration**

- DC conductivity of sodium borate glasses (YNa<sub>2</sub>O(1-Y)B<sub>2</sub>O<sub>3</sub> =  $N_YB_{1-Y}$ ) increase with Na concentration:
  - Arrhenius behavior
  - Increase of several orders of magnitude for increasing alkali content
  - conductivity determined by the number density of mobile ions and by their mobility.
  - At 523K, conductivity increases 5 to 6 orders of magnitude for alkali content between 0 and 0.3
     → large increase in mobility (supported by Na tracer diffusion studies).
- The smallest alkali ion = the highest conductivity: decrease of conductivity in the order of increasing ionic radii: Li > Na > K > Rb.





2D modified random network showing the modifiers channel [Claireaux 2014]



Arrhenius diagram of the dc conductivity (times temperature) for Y N<sub>Y</sub>B<sub>1-Y</sub> glasses [Mehrer 2007]



Electrical dc conductivity of Li, Na, K, and Rb borate glasses [Mehrer 2007]

## **Properties**

Properties of sodium borate glasses (YNa<sub>2</sub>O(1-Y)B<sub>2</sub>O<sub>3</sub> =  $N_YB_{1-Y}$ ):

- The molar volume, normalized to the B content, passes through a shallow minimum and then increases with increasing Na content. The changes small and do not exceed 10%.
- In contrast, the ambient pressure dc conductivity increases by nine orders of magnitude with increasing Na content (0.02-0.24) → increase of the mobility of Na ions.
- The activation enthalpy of charge diffusion, ΔH, decreases linearly with the increasing logarithm of the Na content.
- The Haven ratio of Na in Na borate glass decreases from unity at low Na content to about 0.35 with increasing Na content



Properties of YNa<sub>2</sub>O(1-Y)B<sub>2</sub>O<sub>3</sub> glasses: i): molar volume normalized to the B content. ii): dc conductivity . iii): activation enthalpy of charge diffusion. iv): Haven ratio H (open circles) [Mehrer et al 2016]

#### Haven ratio and mechanisms of diffusion

 Haven ratio depends on the separation parameter (= ratio between average Na-Na distance and average network distance) atoms

$$\frac{\langle d_{ion} \rangle}{\langle d_{network} \rangle} = \left(\frac{1-Y}{Y}\right)^{1/3}$$

- $H_R \sim 1$  at low alkali concentrations  $\rightarrow$  interstitial-like diffusion similar to interstitial diffusion in crystals.
- Higher alkali contents collective → chain-like motions of several ions prevail → decrease of the Haven ratio.
- Stronger pressure dependence for tracer diffusivities than for ionic conductivity → pressure-dependent Haven ratio → increasing degree of collectivity of the ionic jump process with increasing pressure.
- Monte Carlo simulations [Voss *et al.* 2005] : number of ions which participate in collective jump events increases with increasing ion content – i.e. with decreasing average ion-ion distance. For the highest alkali contents up to four ions can be involved in collective motion.
- Similar to diffusion in glassy metals



Haven ratios as a function of the ratio between the average Na-Na distance and the average network distance (separation parameter) for various Na oxide glasses [Mehrer et al 2016]



Schematic illustration of a collective jump event in a chain of six ions. The dark ion represents the tracer, which in a radiotracer experiment is tagged by its radioactivity. In the lower row of ions a collective movement of six ions is indicated. In the upper row the result of a collective jump is illustrated: the tracer moves just one interionic distance, whereas the charge moves six interionic distances [Mehrer et al 2016]

#### **Diffusion dans les verres**

#### Rappel de diffusion

Diffusion dans les verres métalliques

Diffusion dans les verres d'oxydes

#### Diffusion chimique dans les verres d'oxydes.

D. Mangelinck, Atelier thermodynamique des verres, 11 octobre 2019, Marcoule

#### **Diffusion in alloy: Interdiffusion**



**Fig. 6.1** A schematic illustration of an intermixing Cu–Ni diffusion couple: **a** before diffusion; **b** after diffusion



**Fig. 6.2** Schematic illustration of a concentration profile: **a** before diffusion; **b** the intermixing of the components after diffusion

#### Interdiffusion in metallic alloy

Intrinsic flux (crystal lattice frame):  $j_A = -D_A^I \frac{\partial C_A}{\partial x}, \quad j_B = -D_B^I \frac{\partial C_B}{\partial x}$  $v_K = -(\tilde{V}_A j_A + \tilde{V}_B j_B)$  $v_K = \tilde{V}_B (D_B^I - D_A^I) \frac{\partial C_B}{\partial r}$  $J = -D_i^I \frac{\partial C_i}{\partial x} \pm v_K C_i \quad i = A, B$  $\tilde{D} = C_B \tilde{V}_B D^I_A + C_A \tilde{V}_A D^I_B$  $j_i = -B_i C_i \frac{\partial \mu_i}{\partial x} \qquad D_i^* = B_i RT$  $D_{Darken} = (N_A D_B^* + N_B D_A^*) \Phi$  $\Phi = \frac{N_A N_B}{RT} \frac{\mathrm{d}^2 G}{\mathrm{d}N_i^2} = \frac{\partial \ln a_i}{\partial \ln N_i} = 1 + \frac{\partial \ln \gamma_i}{\partial \ln N_i}$  $\tilde{D} = (N_A D_B^* + N_B D_A^*) \Phi S = D_{Darken} S$ 



#### FIGURE 2.15

Interdiffusion and vacancy flow. (a) Composition profile after interdiffusion of A and B. (b) The corresponding fluxes of atoms and vacancies as a function of position x. (c) The rate at which the vacancy concentration would increase or decrease if vacancies were not created or destroyed by dislocation climb.

> Porter and Easterling, Phase transformation in metals and alloys, 1992

#### Interdiffusion in metallic alloy





The relationship between the various diffusion coefficients in the Cu-Ni system at 1000°C (After A.G. Guy, Introduction to Materials Science, McGraw-Hill, New York, 1971.)

Porter and Easterling, Phase transformation in metals and alloys, 1992



#### FIGURE 2.22

Interdiffusion in Au-Ni alloys at 900°C (a) Au-Ni phase diagram, (b) the thermodynamic factor, *F*, at 900°C, (c) experimentally measured tracer diffusivities at 900°C, (d) experimentally measured interdiffusion coefficients compared with values calculated from (b) and (c). (From J.E. Reynolds, B.L. Averbach and Morris Cohen, *Acta Metallurgical* 5 (1957) 29.)

#### **Ambipolar diffusion**

**Ambipolar diffusion** = two diffusing species of different signs

$$j_A = -D_A^* \frac{\partial C_A}{\partial x} + \frac{q C_A D_A^*}{k_B T} E$$
$$j_B = -D_B^* \frac{\partial C_B}{\partial x} + \frac{q C_B D_B^*}{k_B T} E$$

Electrical neutrality  $j_A + j_B = 0$ 

$$E = \frac{k_{\rm B}T}{q} \frac{D_A^* - D_B^*}{C_A D_A^* + C_B D_B^*} \frac{\partial C_A}{\partial x}$$

$$j_A = -D_A^I \frac{\partial C_A}{\partial x}$$
 and  $j_B = -D_B^I \frac{\partial C_A}{\partial x}$ 

$$D_{A}^{I} = D_{B}^{I} = \frac{D_{A}^{*} D_{B}^{*}}{N_{A} D_{A}^{*} + N_{B} D_{B}^{*}}$$

Non ideal solution

$$D_A^I = D_B^I = \frac{D_A^* D_B^*}{N_A D_A^* + N_B D_B^*} \Phi \equiv \tilde{D}_{Nernst-Planck}$$

 $\rightarrow$  Diffusion controls by the slower species

# **Diffusion in multicomponent system**

Flux of species in multicomponent system (1<sup>st</sup> law of Fick):  $J_i = -\sum_{j=1}^n D_{i,j} \nabla C_j$ Mass conservation :  $\sum_{j=1}^n C_j = 1 \implies \sum_{j=1}^n \nabla C_j = 0 \implies \nabla C_N = -\sum_{j=1}^{n-1} \nabla C_j$ 

Flux of :  $J_i = -\sum_{j=1}^{n-1} (D_{i,j} - D_{i,N}) \nabla C_j = -\sum_{j=1}^{n-1} D_{i,j}^N \nabla C_j$  with  $D_{i,j}^n = D_{i,j} - D_{i,n}$ 

Matrix notation (1<sup>st</sup> and 2<sup>nd</sup> laws of Fick):  $J = -D^N \frac{\partial C}{\partial x}$  and  $\frac{\partial C}{\partial t} = D^N \frac{\partial^2 C}{\partial x^2}$ 

$$\boldsymbol{D}^{N} = \begin{bmatrix} D_{1,1}^{N} & \cdots & D_{1,n-1}^{N} \\ \vdots & \ddots & \vdots \\ D_{n-1,1}^{N} & \cdots & D_{n-1,n-1}^{N} \end{bmatrix}$$

Onsager relationship for flux in multicomponent system:  $J_i = -\sum_{k=1}^{n-1} L_{i,k}^N \frac{\partial(\mu_k - \mu_n)}{\partial x}$ 

Matrix notation for Onsager : 
$$J = -L \frac{\partial \mu^{N}}{\partial x}$$
 and  $G \frac{\partial C}{\partial x} = \frac{\partial \mu^{N}}{\partial x} \Rightarrow D = LG$   
Kinetics Thermodynamics

# **Diffusion in multicomponent system**

Diagonalization of the D matrix :  $D = P\Lambda P^{-1}$ 





Profils de concentration à 800 °C (1,5 h)



#### Quelles sont les informations à extraire des profils de diffusion?

1) Les épaisseurs de diffusion donnent une information sur la cinétique des échanges diffusifs.

> Valeurs propres ( $\lambda$ )

2) La **forme** des profils de concentration permet de déterminer les couplages diffusifs et contiennent des informations sur les **mécanismes de diffusion**.

> Vecteurs propres ( $\vec{V}$ )

Profils de concentration à 800 °C (1,5 h)



SiO<sub>2</sub> accéléré en présence d'un gradient de concentration en Na<sub>2</sub>O
 Couplages SiO<sub>2</sub>/Na<sub>2</sub>O et SiO<sub>2</sub>/B<sub>2</sub>O<sub>3</sub>

#### Comment quantifier ces couplages?

#### Résultats des ajustements à 800 °C

|                                                                                                 | Mécanisme diffusif principal                                                                              | Mécanisme diffusif secondaire                                                                                                   |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Vecteurs propres (mol)<br>$\vec{V} \begin{bmatrix} B_2 O_3 \\ N a_2 O \\ S i O_2 \end{bmatrix}$ | $\overrightarrow{V_{max}} \begin{bmatrix} 0,10\\-1,00\\0,90 \end{bmatrix}$                                | $\overrightarrow{V_{min}} \begin{bmatrix} 0,75\\0,25\\-1,00 \end{bmatrix}$                                                      |
| Echanges diffusifs                                                                              | 0, 10 $B_2O_3$ + 0, 90 $SiO_2$ ↔ 1 $Na_2O$<br>Couplages forts entre SiO <sub>2</sub> et Na <sub>2</sub> O | $0,75 B_2 O_3 + 0,25 Na_2 O \leftrightarrow 1 SiO_2$<br>Couplages forts entre SiO <sub>2</sub> et B <sub>2</sub> O <sub>3</sub> |
|                                                                                                 | Cinétique échange diffusif principal                                                                      | Cinétique échange diffusif secondaire                                                                                           |

Les deux échanges diffusifs représentent les mécanismes à l'origine de l'homogénéisation du bain de verre en l'absence de convection.

Comment ces deux échanges se produisent-ils?







I. Farnan and J.F. Stebbins, The nature of the glass-transition in a silica rich oxide melt, Science (1994) H. Pablo et al., Multicomponent diffusion in sodium borosilicate glasses, JNCS (2017)



Comportement des valeurs propres proche de celui de la viscosité et découplé de celui de la conductivité ionique

- Diffusion chimique et viscosité pilotées par la fréquence de rupture des liaisons Si-O-Si et Si-O-B
- Conductivité ionique à rapprocher de l'autodiffusion du sodium

Couplages diffusifs :

- Entre le silicium et le sodium : 0,1 0B2O3+0,90SiO2↔1Na2O
- ➢ Entre le bore et le silicium : 0,75B
  203+0,25Na20↔1Si02

Pas d'évolution des vecteurs propres entre 700 °C et 1100 °C

 Unicité des mécanismes de diffusion



# **C. Claireaux, E Gouillard et al**

[Claireaux et al., 2016] : quaternary system  $CaO-Na_2O-Al_2O_3-SiO_2$ 

Diffusion couples centered on 64.5%SiO<sub>2</sub>, 13.3\%Na<sub>2</sub>O, 10.8%CaO, 11.33%Al<sub>2</sub>O<sub>3</sub>



# **C. Claireaux, E Gouillard et al**



[Claireaux et al., 2016] GCA, Claireaux JNCS 2018 Python package to fit and simulate diffusion profiles : multidiff.

# **C. Claireaux, E Gouillard et al**



#### → The dominant eigenvector involves the fast diffusing species (Na)

#### **Diffusion in glasses: conclusions and questions**

Complex materials = complex diffusion

Role of collective mechanisms?

Thermodynamics / kinetics? D = LG

Precipitation

→ 2<sup>nd</sup> école "Diffusion dans les solides" Marseille 2019





**Benoît Appolaire ONFRA** I FM

**Hartmut Bracht** U. Munster



**Yves Brechet** SIMAP



CEA: SRMP



Sergiy Divinski **U.** Munster

Philippe Knauth AMU/CNRS: Madirel



Lijun Zhang Central South U.

# Ecole de diffusion dans les solides 2020, Marseille







Eugen Rabkin Technion



Alain Portavoce

**CNRS/AMU: IM2NP** 



CEA: SRMP



**Dominique Mangelinck** CNRS/AMU: IM2NP **Maylise Nastar** 

