Diffusion des rayons X et des neutrons aux petits angles

C. Levelut, Laboratoire Charles Coulomb, UMR 5521, département CVN, Université Montpellier II

Petits angles : 5-500 nm

- colloïdes, émulsions, particules, milieu poreux, nanomatériaux, couches minces...,
- distances plus grandes que distances entre atomes
- Échantillon sous toute forme (solide, liquide..)
- Désordonné, ou partiellement ordonné
- hétérogénéités non périodiques qui fluctuent (agitation thermique)

longueur de diffusion de l'échantillon :

 $\rho = \sum \rho_i(r) b_i$ longueur de diffusion d'un élément b_i densité locale de diffuseurs $\rho_i(r)$ (m⁻³)

	RX	neutrons
interaction	electrons	nucléaire
élément	Augmente avec Z	Non monotone avec élément et isotope, >0 ou <0
Angle de diffusion	sin(2θ)/λ	Pas de dépendance angulaire
échantillon	mince (ex:100 μ m pour cuivre)	Peut être épais ou en environnement complexe
λ (Å)	0,4-3	1
E pour λ=1Å	12 keV	82meV

Mesures: en transmission

Collection près du faisceau direct: instrument spécifique

•RX : Épaisseur \Leftrightarrow longueur d'absorption 1/ μ

- \sim 100 µm à λ =1.54Å (tube au cuivre : montage laboratoire)
- **-** ~ 1mm à λ =0.7Å (18keV, synchrotron)

Verres Si, AI, P … comptages longs

Mesures RX sur synchrotron

- cinétique, traitements thermiques
- Intensités absolues (faisceau stable, contenu dans l'échantillon)
- Très petits angles: détecteur loin de l'échantillon, flux intense,

détecteur sensible 2D, tubes sous vides

BM26B (ESRF)

D33 (ILL)

Neutrons

échantillons épais, environnement complexeSensibilité différente en fonction des atomes

Traitement des données

Correction par l'absortion

Correction du fond (cellule vide), éventuellement du « dark »

▲ S+B $I_s(q) =$ $\mu_{S+B} \qquad \mu_B$ Intégration radiale (masque, beamstop) Calibration en q (standard avec distance connue) Intensité absolue: échantillon de référence (ex eau,

compressibilité/intensité connue

Guinier, Bull. Soc. Franç. Min. Crist. 90 (1969) 445)

Dans les verres à l'échelle nanométrique:

 Inombreuses caractéristiques structurales à l'échelle nanométriques.
 Les premières études par SAXS sur des verres remontent aux années 1950. trois échelles principales d'organisation.

@Fluctuations thermiques de densité

↓Intensité absolue q→0

 $\operatorname{Im}_{Q\to 0} I(Q) = k_{B} T \chi(T)$

↓Liquides ↔ compressibilité isotherme

Verres:f(compressibilité, Tf,)

@Fluctuations thermiques de concentration

\$\$\prod_\$\$ systèmes vitreux chimiquement complexes (verres multicomposants)
\$\$\prod_\$10-15 Å pour les borates alcalins
\$\$\prod_\$20-30 Å pour les silicates alcalins
\$\$\prod_\$10-12 Å pour les borosilicates et borogermanates.

Takahashi, Appl. Phys. Lett.95 (2009) 071909 Titov Sov. J. Glass Phys. Chem. 7(1991)44 Vasilevskaye Fiz Khem Stekla 6 (1980)51 Golubkhov , Glass Phys. Chem 37 (2011) 252

e Fluctuations supercritiques

inhomogénéités de plus grandes tailles
300-400 Å dans les borosilicates
30-100 Å dans les aluminoborate de plomb
origine et caractère cristallin ?
souvent associées à un phénomène de séparation de phases.

Golubkhov Sov. J. Glass. Phys. Chem. 7 (1981) 272 Golubkhov Sov. J. Glass. Phys. Chem. 18 (1997) Porai-Koshits , J. Non-Cryst. Solids, 49, 143-156.

e Microségrégation des cations

Modified random network (Greaves)

(see Fig. 12). (c) MD simulations of $(Na_2O)_x(SiO_2)_{1-x}$ glasses [36]. In these sections, Na's and NBO's are shown shaded. With the modifier content increasing from left to right, x = 0.05, 0.2 and 0.3 and microsegregation is evident, even in the most dilute case. Channels become

established above the percolation threshold x = 0.16 [27].

Alcalins présents dans des « Canaux » : statiques ou dynamiques ?

Greaves, JNCS 222 (1997) 13 Huang, J. Phys. Chem 93(1990)8180

Pic ou intensité du signal↑?

Porai-Koshits, JNCS 1 (1968) 29 Séparation de phase dans un verre $Na_2O-SiO_{2^{**}}$

~100nm→verre opalescent

À plus petite échelle (transparent)

Zarzycki, JNCS 1(1969)215 décomposition spinodale taille ~130Å dans un verre B₂O₃-PbO-Al₂O₃

Fig. 10. Determination of a spinodal wavelength from an electron micrograph. (a) Transmission electron micrograph showing a spinodal decomposition texture from which a diffraction grating was prepared. (b) Corresponding Fraunhofer diffraction spectrum obtained from this grating ($\lambda = 5461$ Å). (c) Photometric trace across the diffraction ring. From ref. 5.

Nucléation, cristallisation homogène ou hétérogène

TEM micrograph of a cordierite glass ceramic. Spinel nanocrystallites

Bras, Crystal Growth & design 9 '2009)1297

Figure 3. Anomalous large spinel crystal. The particle diagonal is about 1500 Å. Diffraction on all parts of the crystallite give the same orientation and confirm a near spinel structure with a unit cell of about 8 Å. The lighter parts are amorphous which gives the impression that it is a kind of dendritic growth.

Définitions: Facteur de forme P(q)

Diffusion d'une particule

Interaction entre toutes les ondes envoyées par tous les

atomes de la particules

•Collection de particules identiques et éloignées les unes des autres (distances grandes par rapport à λ) échantillon dilué

[D'après A Practical guide to SAXS, H.Schnablegger and Y. singh, ed Anton Paar, Autriche 2006]

Exemple: Facteur de forme d'une particule sphérique

$$\frac{N}{V} \int_{sphere} d^{3}rn(r)e^{iqr} = \frac{N}{V} \int_{r\theta} r^{2}dr \sin\theta d\theta n(r)e^{iqr\sin\theta}$$

$$=\frac{N}{V}\int_{r}r^{2}dr e^{iqr}/qr = \frac{N}{V}\frac{1}{q}\int_{r=0}^{R}rdr e^{iqr}$$

$$=\frac{N}{R^3}(\sin qR - qR\cos qR)/q^3$$

 $P(Q) = 9((\sin qR - qR\cos qR)/(qR)^3)^2$

Polydispersité

P(q)=somme de tous les P(q)

Cas simple d'un échantillon avec 3 tailles de particules.

Addition de fonctions dont les positions des minimas sont différentes
réduction des minimas

D'après A Practical guide to SAXS, H.Schnablegger and Y. singh, ed Anton Paar, Autriche 2006

Définitions: Facteur de structure S(q)

*****Particules proches (distances $\sim \lambda$)

Interférences cohérentes entres particules voisines
I(q)=KS(q)P(q)

Intensité absolue

Analyse « indépendante » d'un modèle Rayon de giration (Guinier)

♦ échantillon dilué
♦ particules identiques
♦ limite q→0

Facteur de forme Lim q\rightarrow0 qR<<1

$$P(Q) = \sum_{i} \sum_{j} \exp(-iqr_{i})\exp(+iqr_{j})$$
$$= \sum_{i} \sum_{j} (1 - iqr_{i})(1 + iqr_{j})$$

$$\vec{E}_0$$

$$P(Q) = 1 - q^2 \frac{R_g^2}{3}$$
 avec $R_g = \frac{1}{N} \sum_{i} r_i^2$

⇒Régime linéaire en log l(q)) versus q²

Application: exemple d'analyse « de Guinier »

Verre CEA Marcoule 1%Mo 3% Cs Traité à 800°C

$$\ln(I(q)) = \ln(a_0) - \frac{R_g^2}{3}q^2$$

Graphe de « Guinier » InI(q)) versus q²

 $\ln(I(q))=\ln(I(0))-R_{g}^{2}q^{2/3}=13.7-621.3q^{2/3}$

Analyse de Guinier : limite $q \rightarrow 0$ du facteur de forme pour une sphère

$$P(Q) = 9((\sin qR - qR \cos qR)/(qR)^3)^2$$

$$P(Q) = \frac{9}{(qR)^3}((qR - \frac{1}{3!}(qR)^3 + \frac{1}{5!}(qR)^5 - qR + \frac{1}{2!}(qR)^3)$$

$$-\frac{1}{4!}(qR)^5)^2 = 9[\frac{1}{3} - (qR)^2\frac{4}{5!}]^2 \approx 1 - \frac{(qR)^2}{5}$$

$$P(Q) = (1 - \frac{(qR_g)^2}{3}) \quad \text{avec} \quad R_g^2 = \frac{3}{5}R^2 \quad R = \sqrt{5/3}R_g^2$$

Exemple précédent:

R_g=43.8∓1.2nm **◇R=56.5**∓1.5nm Particules sphériques

Exemples de rayons de Guinier, R_a, pour différentes formes de particules

Géométrie de la particule	R_g^2
Sphère de rayon R	$\frac{3R^2}{5}$
Coquille sphérique de rayon $R_1 > R_2$	$\frac{3}{5} \frac{R_1^5 - R_2^5}{R_1^3 - R_2^3}$
Ellipse de semi-axes <i>a</i> et b	$\frac{a^2 + b^2}{4}$
Ellipsoïde de semi-axes <i>a</i> , <i>b</i> et <i>c</i>	$\frac{a^2+b^2+c^2}{5}$
Prisme de côté A, B et C	$\frac{A^2+B^2+C^2}{12}$
Cylindre de rayon R et de longueur l	$\frac{R^2}{2} + \frac{l^2}{12}$

Références:

Lelong G., Price D. L., Saboungi M.-L. (2011) "Scattering techniques" In: Kanellopoulos N. (Ed.), Nanoporous Materials: Advanced Techniques for Characterization, Modeling, and Processing, CRC Press INC, pp. 3-52.

4Glatter O., Kratky O. (1982) "Small angle x-ray scattering." New-York, Academic Press.

4Glinka C. (2000) "SANS From Dilute Particle Systems." In, NCNR Summer School

Analyse « indépendante » d'un modèle : Régime de Porod

Aux grands angles, loi de Porod

$$I(q) \approx \frac{K_{p}}{q^{4}}(+B)$$

⊘Rem: fentes linéaires: q⁻⁴→q⁻³

Porod plot »

$$q^4I(q) = K_p + Bq^4$$

Fond⇔pente dans le graphe de Porod

Invariant Qp
$$Q_p = \int_0^\infty q^2 I(q) dq$$

Surface sur volume

$$rac{S}{V} \propto rac{K_p}{Q_p}$$

Volume de Porod

$$V_p = \frac{2\pi^2}{Q_p} I(0)$$

Application: exemple d'analyse « de Porod »

L. L. HENCH ET AL. : EARLY STAGES OF CRYSTALLISATION IN A Li2O-2SiO2 GLASS

Exemple : verres Li₂O-2SiO₂

Hench et al, Phys. Chem. Glass. 12, 58 (1971)

$R_p = \frac{5}{8\pi(1-V)q^2I(q)}$

Modèle sphérique

Gerold, Phys. Stat. Sol.1 (1961) 37)

Figure 1. X-ray small angle scattering curves from a glass containing 30 mol% Li₂O as a function of heat treatment at 500° C △ 2 h ○ 5 h ● 10 h

 \triangle 3 h at 475°C \bigcirc 5 h at 500°C

Heat treatment time (h)	Guinier radius (Å) for glass with 30% Li2O	Guinier radius (Å) for glass with33% Li2O	Porod radius (Å) for glass with 30% Li2O	Porod radius (Å) for glass with 33% Li2O
2	265-302		159	
3		256		152
5	228-272	233	149	196
10	237-312	242	143	194

Exemple: Facteur de forme d'une sphere aux grands q

qR>>1 cosqR~sinqR ~ $1/\sqrt{2}$

$$P(Q) = 9((\sin qR - qR\cos qR)/(qR)^3)^2$$
$$= \frac{9}{((qR)^3)^2} \left[\frac{1}{\sqrt{2}} - \frac{qR}{\sqrt{2}}\right]^2 = \frac{9}{2(qR)^6}(qR)^2 = \frac{9}{2(qR)^4}$$

P(Q)~q⁻⁴ aux grands q

Analyse : structure et forme des particules

Comportement schématique des différentes régions en Q du facteur de forme pour des particules.

- -2↔ lamellaire
- $-1 \leftrightarrow$ cylindrique
- 0↔ sphérique
- $<-2 \leftrightarrow$ particules trop grosses

Pente régime de Guinier

A Practical guide to SAXS, H.Schnablegger and Y. singh, ed Anton Paar, Autriche 2006 Exemple : verres SiO₂-B₂O₃-Na₂O-Cs₂O-MoO₃
CEA, S. Schuller, B. Penelon, D. de Ligny, S. Kroeker, L. Cormier
problème de séparation de phase liquide-liquide lorsqu'on incorpore
trop de molybdène (limite de solubilité du Mo)→verre inhomogène
✓ phase majoritaire appauvrie en Mo

phase minoritaire enrichie en Mo, alcalins et alcalino-terreux

Exemple : verres SiO₂-B₂O₃-Na₂O-Cs₂O-MoO₃

Diffusion des rayons X aux petits angles sur BM26B (ESRF) λ =0.72Å distance échantillon -détecteur=7m

_1 (

Fit avec P(q) pour une distibution de spheres diluées de rayon **R=51.34nm** avec une distribution lognormale polydispersité 18%

Rappel: **Guinier : R=56nm** ⇔ P(q) spheres R=51nm Porod R=49nm

Exemple : verres SiO₂-B₂O₃-Na₂O-Cs₂O-MoO₃

Mesures ex-situ

Autres exemples d'étude de séparation de phase

systèmes MAS, LAS ou ZAS contenant TiO₂ et/ou ZrO₂

Alekseeva JNCS 356 (2010); JNCS 357(2011); Chuvaeva JNCS 243(1999);Golubkov Glass Phys. Chem. 26 (2000); Glass Phys. Chem. 29 (2003); JNCS 345&346 (2004); JNCS 351 (2005)

verres alcalins silicatés ou boratés

Andreev Disc. Far. Soc. 50(1970); Golubkov JNCS 192 & 193(1995); Döpkens JNCS 64 (1984); Rindone JNCS 49 (1982)

système TiO₂-SiO₂

Labarbe P Phys. Chem. Glasses, 29 (1988)

Système SiO₂-Na₂O

Porai-Koshits JNCS 1 (1968

SAXS dans un verre 7,5Na2O-92,5SiO2 (1 : 580 °C, 2 : 660 °C, 3 : 685 °C, 4 : 715 °C et 5 : T > T_{liquidus})

microscopie électronique d'un verre 7,5Na2O-92,5SiO2 traité 4h à 836 °C

Décomposition spinodale

►verre B₂O₃-PbO-Al₂O₃
►SAXS en laboratoire avec λ = 1,54 Å)
►bon contraste électronique.
►premier régime : pic large vers Q = 0,05 Å⁻¹ ⇔décomposition spinodale.
►second régime, t>30 min, pic vers petits Q ⇔ mûrissement d'Otswald.

SAXS dans un verre $76B_2O_3$ -19PbO-5Al₂O₃ trempé à partir de 1160 °C et traité à 450 °C pour différentes durées indiquées sur les courbes

Nucléation / cristallisation

Premières mesures SANS dans des verres MAS contenant TiO₂

Artaille des inhomogénéités, temps d'incubation, rayon des germes critique (~ 9 Å), distance entre particules (~ 900 Å).
Loshmanov J. Appl. Cryst., 7 (1974);Wright Phys.

Chem. Glasses 26 (1985), Wright Nature, 277 (1979)

SAXS dans un verre MAS contenant ZrO₂ (bon contraste)

Séparation amorphe-amorphe avant la formation des premiers cristaux? Neilson .Disc. Far. Soc. 50 (1970)

SAXS (Anomalous SAXS) ⇔ sonde préférentiellement certains éléments.

premiers stades de nucléation dans des verres MAS contenant TiO₂ et ZrO₂

>couche enrichie en TiO₂ autour des premiers cristaux (mixtes TiO₂/ZrO₂)

Lembke Nucl. Instr. Meth. Phys. Res. B, 97 (1995); Lembke J. Appl. Cryst., 30 (1997) Lembke J. Phys. IV, C8, suppl. Vol. 1 (1993)

✓Vitrocéram.13,6Na₂O-62,9SiO₂-8,5MnO-15,0Fe₂O₃ avec nanocristaux magnétiques Fe ,Mn
> concentration > au coeur; + couche SiO₂ autour, barrière pour diffusion/ croissance des part.

Raghuwanshi J. Appl. Cryst. 45 (2012)

Nucléation/cristallisation dans un verre Ca₅(PO₄)₃F par SANS

Mesures SANS in situ dans un four

Échantillons~ 1cm

●Pic large ⇔25-27 nm, séparation à courte échelle

Signal aux petits Q ⇔ nucléation

Cristallisation de fluoroapatite (diffraction)

Hill J. Am. Ceram. Soc. 90 (2007)

Nucléation/cristallisation dans un verre de cordiérite par SAXS

cristallisation simultanée de quartz β et de spinelle MgCr_{2x}Al_{2(1-x)}O₄

neutrons sensibles aux anions O ⇔SANS pour fluctuations de desnité dans le verre et

phase quartz β

●intensité ~ R_g^6 ⇔nombre constant de particules sphériques, contraste électronique constant : $I(0) ~ (\Delta r)^2 N_p R_g^6$ • $R_g ~ \sqrt{t}$ ⇔ processus limité par la diffusion •minimum secondaire de P(Q) ⇔ particules assez monodisperses.

♦ fraction cristallisée finale ~ 4 % (Porod) ⇔ tous les
 atomes de chrome sont inclus dans le spinelle.

Cristallisation : verres dopés avec des cristallites de CdS_xSe_{1-x}

La taille, la forme, la distribution et la surface des nanocristallites déterminent les

propriétés optiques linéaires et non-linéaires des verres dopés

Cristallites, orientations aléatoires, assez monodisperses

- informations sur la forme
- Informations sur la surface
- distribution des cordes à grand $q \rightarrow présence d'arêtes$ N (prismes hexagonaux)

(arblt.

mensity

Fig.

Fig. 4. Size-distribution function. Plain line: logarithmic size distribution deduced from the simulation obtained from the log normal distribution of cubic particles. Dotted line: equivalent Gaussian distribution function (same full width at half-maximum and same maximum value)

Fig. 5. Measured scattered intensity (plain line) and intensity calculated nodel of cubic shape and the log normal size-distribution function of Fig. 4 (dotted line).

informations sur la distribution

lognormale meilleure que gaussienne N

Ramos J. Phys. IV Collogue C8, 3 (1993) 377 Ramos J. Appl. Cryst.29(1996) 346

0

Conclusion

Sensible à beaucoup de phénomènes

Contient beaucoup d'information: modèle, taille, forme, polydispersité etc

Plusieurs types d'analyse détaillée possibles

Choix de la gamme en q ↔ connaître déjà ce qu'on cherche
Taille doit rester dans la bonne gamme: évolution faible ?
Contraste électronique nécessaire
Informations complémentaires requises
Analyse quantitative repose sur un modèle
Difficile d'extraire les détails
Structure moyenne
Résultats ambigüs

Expériences sur synchrotron:⇔ avantage : faisceau intense

Mais cristallisation ous faisceau possible (Martis, Crystal Growth Design 11(1991)2858),