Données et modélisation thermodynamiques du verre et du liquide dans le système Na₂O-SiO₂

Pierre Benigni CNRS - IM2NP

Atelier commun GDR ThermatHT – USTV

« Thermodynamique des Verres » Lyon, 11 octobre 2018

Institut Matériaux Microélectronique Nanosciences Provence

Plan de l'exposé

- Rappel sur le 2-state model
 - Exemple du Pb
- Les « end-members »
 - SiO₂
 - Na₂O
- Le système binaire Na₂O-SiO₂
 - T_g
 - Incrément enthalpique et C_p
 - Enthalpie de mélange (liquide et verre)
 - Activité
- Na₂O à l'état vitreux hypothétique
- Limites et évolutions du 2-state model
- Perspectives : extension à B₂O₃

« 2 state model »

Description du « 2-State model »

- Objectif du modèle
 - Améliorer la description SGTE classique des liquides surfondus et introduire la transition vitreuse
- Modèle développé par Agren et al.
- Principales hypothèses
 - Le liquide et le verre sont une phase unique
 - Cette phase est une solution idéale composée de 2 types d'entités (atomes, molécules...)
 - Entités « liquid-like », qui ont des degrés de liberté en translation
 - Entités « solid-like », qui n'en ont pas
 - Les fractions de « solid-like » et de « liquid-like » varient avec T,
 - Quand T

 , les entités liquid-like perdent progressivement leurs degrés de liberté en translation et deviennent solid-like
- Si ξ = fraction d'atomes « liquid-like », l'enthalpie libre molaire du liquide/verre s'écrit

$$G_{m}^{L} = (1 - \xi) G_{m}^{sol} + \xi G_{m}^{liq} + R T (\xi \ln \xi + (1 - \xi) \ln (1 - \xi))$$

$$G_m^{liq} - G_m^{sol} = \Delta G_d = A + BT + CT \ln T + \dots$$

$$\boldsymbol{G}_{m}^{L} = \boldsymbol{G}_{m}^{sol} \boldsymbol{\xi} \Delta \boldsymbol{G}_{d} + \boldsymbol{R} \boldsymbol{T} (\boldsymbol{\xi} \ln \boldsymbol{\xi} + (1 - \boldsymbol{\xi}) \ln (1 - \boldsymbol{\xi}))$$

« 2-State model »

• A chaque T, la fraction de « liquid-like » peut être déterminée par minimisation de l'enthalpie libre

$$\frac{\partial G_m^L}{\partial \xi} = 0 \quad \Rightarrow \quad \xi = \frac{\exp\left(-\Delta G_d/RT\right)}{1 + \exp\left(-\Delta G_d/RT\right)}$$

J. Agren, B. Cheynet, M. T. Clavaguera-mora, K. Hack, J. Hertz, F. Sommer, and U. Kattner, Calphad **19**, 449 (1995).

• Toutes les autres fonctions (S, H, Cp) peuvent être calculées à partir de l'expression de G, en utilisant les relations thermodynamiques classiques

$$H_m^L = H_m^{sol} + \xi \Delta H_d \qquad C_p^L = C_p^{sol} + \xi \frac{d \Delta H_d}{dT} + \Delta H_d \frac{d \xi}{dT}$$

• Le verre idéal « solid-like » dans lequel toutes les entités structurales ont perdu leurs degrés de liberté en translation est défini par rapport au cristal sous la forme :

$$\boldsymbol{G}_{m}^{sol} = \boldsymbol{G}_{m}^{crys} + \boldsymbol{a} + \boldsymbol{d} \boldsymbol{T}^{2}$$

• A partir des descriptions des verres A et B purs, le modèle peut être étendu à un verre binaire A-B en utilisant un modèle de solution régulière :

$$\boldsymbol{G}_{m}^{sol} = \boldsymbol{X}_{A}^{L} \boldsymbol{G}_{A}^{sol} + \boldsymbol{X}_{B}^{L} \boldsymbol{G}_{B}^{sol} + \boldsymbol{X}_{A}^{L} \boldsymbol{X}_{B}^{L} \boldsymbol{L}_{AB}^{L}$$

$$\Delta \boldsymbol{G}_{d} = \boldsymbol{x}_{A}^{L} \Delta \boldsymbol{G}_{d}^{A} + \boldsymbol{x}_{B}^{L} \Delta \boldsymbol{G}_{d}^{B} + \boldsymbol{x}_{A}^{L} \boldsymbol{x}_{B}^{L} \Delta \boldsymbol{G}_{d}^{AB}$$

imenp

Exemple:

A thermodynamic description of data for pure Pb from 0 K using the expanded Einstein model for the solid and the two state model for the liquid phase

A.V. Khvan^{a,*}, A.T. Dinsdale^{b,d}, I.A. Uspenskaya^c, M. Zhilin^{a,c}, T. Babkina^c, A.M. Phiri^a

Cristal

$$0 < T < 600.61 \text{ K}$$

$$G = -7697.6474 + \frac{3}{2}R \cdot \theta_E - 3RT ln \frac{e^{\theta_E/T}}{(e^{\theta_E/T} - 1)} - \frac{+3.926E - 03}{2}T^2 - \frac{+1.225E - 05}{6}T^3$$

$$\theta_E = 63.6306 \text{ K}$$

$$-\frac{-3.663E - 08}{12}T^4 - \frac{+4.705E - 11}{20}T^5$$

$$600.61 \text{ K} < T$$

$$G = -7697.6474 - 1001.34 + \frac{3}{2}R \cdot \theta_E - 3RT ln \frac{e^{\theta_E/T}}{(e^{\theta_E/T} - 1)} + 26.16438T - 4.05647T ln(T)$$

$$+ \frac{-1.781E + 17}{30}T^{-5} + \frac{6.36209E + 33}{132}T^{-11}$$
Liquide/verre

$$G = -5391 + \frac{3}{2}R\theta_E + 3RT \ln \frac{(e^{\theta_E/T} - 1)}{e^{\theta_E/T}} \quad \text{« Solid-like »}$$

$$\Delta G_{dif} = G_m^{liq} - G_m^{sol} = 7000 - 4.518T - T \ln T$$

$$Différence entre$$

$$\text{« solid-like » et « liquid like »}$$

- Toutes les fonctions thermodynamiques du verre peuvent être calculées de manière analytique explicite
 - Par exemple avec un logiciel de calcul symbolique _

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Les oxydes unaires à l'état vitreux

Description thermodynamique schématique d'un verre unaire

 Si l'on s'intéresse uniquement au couple de variables thermodynamiques (T, S)

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

SiO₂ vitreux

• Enthalpie de formation par rapport aux éléments

Références	$\Delta_{f} H^{298}(vitr.SiO_{2})/kJmol^{-1}$		
Richet et al. (1982) – table 12	-901,554		
USGS 1452 – 3 rd printing (1984), page 221	$-903,2\pm 2,092$		
Tables de Gurvich – vol. 2 (1991)	$-901,4\pm 1,1$		

- Température de transition vitreuse T_g
 - Richet et Bottinga (1986) $\boldsymbol{q}_0 = 20 \, \boldsymbol{K} \, \boldsymbol{min}^{-1}$

	<i>tg /</i> K			
$q/q_0 = 1$	$q/q_0=10^2$	$q/q_0=10^4$		
1480	1608	1761		

- Yue (2015) : la teneur en eau diminue le T_g de SiO₂
 - anhydre T_g = 1480 K
 - 1 ppm d'hydroxyl (et impuretés métalliques < 20 ppm), T_g = 1434 K
 - T_g décroît aussi avec le nombre de cycles en DSC.

Capacité thermique de SiO₂ vitreux et liquide

« 2 state model » de Golczewski et al. (1998)

- Modèle développé pour les oxydes
 - Les unités structurales du liquide et du verre ne sont pas des atomes simples
 - Un composant virtuel appelé « Structural Fluctuation (SF) » est introduit dans l'expression de G de l'oxyde vitreux avec y_{SF} = fraction de SF

$$G_{OX}^{am} = G_{OX}^{id} + y_{SF}G_{SF} + RT(y_{SF}\ln y_{SF} + (1 - y_{SF})\ln (1 - y_{SF})) + G^{ex}$$

Avec $G_{SF} = \Delta E - RT$ $G_{SF} / Jmol^{-1} = 60000 - R(T/K)$

 Par rapport au modèle de Agren et al., la seule différence formelle réside dans la présence du terme d'excès

$$G^{ex} = y_{SF}(1 - y_{SF})(\underline{L}_0 + \underline{L}_1(1 - 2y_{SF}))$$

• Valeurs des paramètres pour SiO₂

Ecart constant de C_p entre le verre idéal et le cristal

```
AMORPHOUS SiO<sub>2</sub>

G^{id}(SiO_2) = G^{cr}(SiO_2) + 5219.1293 - 37.25216 T + 4.8831 \Gamma \ln T

G^{cr}(SiO_2) = 543 < T < 3300

= -943127.51 + 493.26056 T - 77.5875 T \ln T + 0.003040245 T^2

-4.63118 \cdot 10^{-7} T^3 + 2227.125 T^{-1}

L0(SiO_2,SF) = + 59837.817 + 463.76576 T + 55.090386 T \ln T

L1(SiO_2,SF) = - 24666.399 + 30.098861 T
```


Calcul des fonctions thermodynamiques de SiO₂ avec le modèle de Golczewski et al. (1998)

- L'introduction du terme d'excès nécessite de rechercher numériquement la fraction y_{SF} qui minimise G à chaque T (pas d'expression explicite y_{SF} (T))
 - Calcul numérique programmé en python

 Erreur(s) probable(s) dans les valeurs des paramètres reportées dans l'article original car l'allure des courbes C_p(T) est irréaliste et la valeur de T_g ne correspond pas à SiO₂

Na₂O

• Température de fusion du cristal

Références	Méthode	T_{fus}/K	
Bunzel et Kohlmeyer (1947)	ATS + observation visuelle	1193	
Brewer et Margrave (1955)	Examen visuel d'échantillons ayant été chauffés à différentes T	1190 ± 10	
Bouaziz et al. (1966)	ATD	1405 ± 4	
JANAF 4 th ed. (1968)	Compilation	1405	
Maupré (1978)	ATD	1333	
USGS (1979)	Compilation	1193	
USBM 677 (1984)	Compilation	1405	
Wriedt (1987)	Compilation	1407 ± 4	
Smith et al. (2017)	Optimisation CALPHAD	1405	

Na₂O

 Incrément enthalpique : mesures par calorimétrie de chute avec calorimètre isopéribolique à bloc de Cu

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Diagramme de phases Na-O

• Optimisation CALPHAD de Smith et al. (2017)

Avec la phase gaz

En excluant la phase gaz

Le système Na₂O-SiO₂

Optimisations CALPHAD et diagrammes de phases

•

1800

1600

1400 e/°C

1200

Liquid

Aix*Marseille

<F*A*C*T>

17230-

n ez

1465⁰ cris

trid

Optimisations CALPHAD et diagrammes de phases

Optimisations CALPHAD et descriptions du liquide

Référence	Description du liquide	Remarques		
(Wu et al., 1993)	Modified Quasi-chemical Model Modified Quasi-chemical Model Model 5 composés, lacune métastal subsolidus calculée plus étroite q mesures mais le point critique es reproduit			
(Lambotte & Chartrand, 2011)	Modified Quasi-chemical Model in the Quadruplet Approximation (MQM-QA) FNN = pairs, SNN = quadruplets Quadruplet = 2 cations + 2 anions	6 composés, lacune métastable subsolidus calculée plus étroite que les mesures mais le point critique est bien reproduit		
(Zhang, Schmetterer, & Masset, 2013)	Liquide ionique à 2 sous réseaux : $(Na^+)_P (O^{2^-}, SiO_4^{4^-}, SiO_2^0, Va)_Q$	6 composés, modèle du liquide avec 8 paramètres ajustables, 2 lacunes artificielles, mauvais accord sur les activités dans le liquide		
(Bordier, 2015)	Espèce associée à la composition de l'orthosilicate : $Na_4SiO_4=2Na_2O-SiO_2$	6 composés, modèle du liquide avec 9 paramètres ajustables, lacune métastable subsolidus mal reproduite		

Evolution de T_g avec la composition

Incrément enthalpique

Capacité thermique du liquide

- D'après Richet et al. (1984)
 - Pas de C_p d'excès entre SiO₂ et NS

Fig. 2. Heat capacity of Na₂O-SiO₂ liquids. Data are taken from (\blacksquare) Ref. 7, (\diamondsuit) Ref. 11, (\triangledown) Ref. 4, (\square) Ref. 12, (\triangle) Ref. 13, (\bigcirc) Ref. 14, and (\spadesuit) present work. Curves represent values predicted by the models of (--) Ref. 15, (-·-) Ref. 16, and (--) present work.

23

Capacité thermique du verre

- Revue des modèles : exposé D. Neuville atelier 2017
- Exemple : modèle additif de Richet et al. (1987)

where x_i is the mole fraction of oxide *i* in the $C_{Pg} = \sum_{i} x_i \bar{C}_{Pi}$ where x_i is the inglass considered.

Attention les puissances fractionnaires ne sont pas permises dans tous les logiciels CALPHAD

Coefficients of partial molar heat capacities of oxides in silicate glasses:

 $C_{P_i} = a_i + b_i T + c_i / T^2 + d_i / T^{1/2}$ (J mol⁻¹ K⁻¹)^{*1}

	a_i	$10^3 b_i$	$10^{-5}c_i$	d_i	$\frac{\Delta T^{(*2)}}{(\mathrm{K})}$	<i>Ax</i> (*3)
SiO ₂ ^(*4)	127.200	- 10.777	4.3127	-1,463.9	270-1,600	33-100
Na ₂ O	<u>70.884</u>	26.110	<u> 3.5820</u>	0	270-1,170	0-33
K ₂ O	84.323	0.731	8.2980	$ \frac{1}{0} - \frac{1}{0}$	270-1,190	0-17
CaO	39.159	18.650	-1.5230	0	270 - 1,130	0-50
MgO	46.704	11.220	-13.280	0	270 - 1,080	0-50
Al_2O_3	175.491	-5.839	-13.470	-1,370	270 - 1,190	0-33
TiO_2	64.111	22.590	-23.020	0	300-800	0-17
FeO	31.770	38.515	-0.012	0	300-800	0 - 40
Fe_2O_3	135.250	12.311	39.098	0	300-800	0-13
$B_2O_3^{(*5)}$	215.151	-3.435	15.836	-2,920	270-510	100
H_2O	81.437	0.098	-31.094	0	298-423	18

*¹For other oxides, use the heat capacities of the crystalline phases (see text.).

*²Temperature interval of the experimental data used to derive C_{Pi} .

 *3 Range of mole fractions of this oxide in the data of Table II (see text for B_2O_3 and H_2O_3).

 $^{*4}C_{P}$ equation for pure SiO₂ glass (Richet et al., 1982).

 ${}^{*5}C_P$ equation for pure B₂O₃ glass derived from the C_P measurements of Shmidt (1966) and Tarasov et al. (1967).

Enthalpie de mélange du liquide

Détermination de ∆_{mix}H du liquide par calorimétrie de chute-réaction à 1450 K

M. Fan, Thermochemical study of the melts Na₂ O-SiO₂, Na₂O–GeO₂, Na₂O–B₂ O₃ and Li₂ O-B₂ O₃, Fakultät für Bergbau, Hüttenwesen und Geowissenschaften, RWTH, Aachen, 1991, p. 98.

- A 1450 K :
 - SiO₂ pur est vitreux car T_g (SiO₂ refroidi à 20 K/min) = 1480 K,
 - les échantillons binaires sont liquides
- Cycle thermodynamique pour convertir les mesures brutes en enthalpie de mélange du liquide

$$\begin{aligned} x \langle Na_2 O \rangle_{296} + (1-x) \langle SiO_2 \rangle_{296}^{verre} \rightarrow (Na_2 O)_x (SiO_2)_{1-x,1450} & \Delta H_1 \text{ mesurée} \\ \langle Na_2 O \rangle_{296} \rightarrow (Na_2 O)_{1450} & \Delta H_2 = 165,84 \text{ kJ mol}^{-1} \\ \langle SiO_2 \rangle_{296}^{verre} \rightarrow \langle SiO_2 \rangle_{1450}^{verre} & \Delta H_3 \text{ mesurée} \\ \langle SiO_2 \rangle_{1450}^{verre} \rightarrow (SiO_2)_{1450} & \Delta H_4 \approx 0 \\ x (Na_2 O)_{1450} + (1-x) (SiO_2)_{1450} \rightarrow (Na_2 O)_x (SiO_2)_{1-x,1450} & \Delta_{mix} H \\ & \Delta_{mix} H = \Delta H_1 - x \Delta H_2 - (1-x) (\Delta H_3 + \Delta H_4) \end{aligned}$$

Méthode alternative de Lambotte et Chartrand pour estimer Δ_{mix} H liquide aux compositions NS et NS2

• Cycle thermodynamique, **exemple pour NS** (T_f = 1363 K) :

$$\langle NS \rangle_{T_{f}} \rightarrow (NS)_{T_{f}} \qquad \Delta H_{1}$$

$$\langle N \rangle_{298} + \langle S \rangle_{298} \rightarrow \langle NS \rangle_{298} \qquad \Delta H_{2}$$

$$\langle NS \rangle_{298} \rightarrow \langle NS \rangle_{T_{f}} \qquad \Delta H_{3}$$

$$\langle N \rangle_{298} \rightarrow (N)_{T_{f}} \qquad \Delta H_{4}$$

$$\langle S \rangle_{298} \rightarrow (S)_{T_{f}} \qquad \Delta H_{5}$$

$$(N)_{T_{f}} + (S)_{T_{f}} \rightarrow (NS)_{T_{f}} \qquad \Delta_{mix} H$$

 $\Delta_{mix}H = \Delta H_1 + \Delta H_2 + \Delta H_3 - \Delta H_3 - \Delta H_4$

• Calcul analogue faisable pour NS2

Enthalpie de mélange dans le liquide

Détermination de ∆_{mix}H du liquide par calorimétrie de dissolution isotherme à 876 K dans 2PbO-B₂O₃

To cite this article: J. Rogez & J. C. Mathieu (1985) Enthalpie de Formation dans le Système Na₂ O-K₂O-SiO₂ , Physics and Chemistry of Liquids, 14:4, 259-272, DOI: <u>10.1080/00319108508080990</u>

- A 876 K :
 - les échantillons binaires sont liquides
 - SiO₂ pur est vitreux car T_g (SiO₂ refroidi à 20 K/min) = 1480 K
- Cycle thermodynamique

$$(Na_2O)_x(SiO_2)_{1-x,876} \rightarrow \left(\left((Na_2O)_x(SiO_2)_{1-x}\right)\right)_{2\ PbO-B_2O_3,876} \qquad \Delta H_1 \quad \text{mesurée}$$

$$(Na_2O)_{876} \rightarrow ((Na_2O))_{2 PbO-B_2O_3,876}$$
 ΔH_2 à estimer

$$(SiO_2)_{876}^{verre} \rightarrow ((SiO_2))_{2 PbO-B_2O_3,876} \Delta H_3$$
 mesurée

 $(SiO_2)_{876} \rightarrow (SiO_2)_{876}^{verre}$ ΔH_4 à estimer

$$x(Na_2O)_{876} + (1-x)(SiO_2)_{876} \rightarrow (Na_2O)_x(SiO_2)_{1-x,876}$$
 $\Delta_{mix}H$

$$\Delta_{mix}H = x \Delta H_2 + (1-x)(\Delta H_3 + \Delta H_4) - \Delta H_3$$

$\Delta H_1 \text{ et } \Delta H_3$ dissolutions isothermes dans 2PbO-B₂O₃

FIGURE 2 Enthalpie de dissolution des composés $(Na_2O)_x(SiO_2)_{(1-x)}$ liquides dans 2PbO-B₂O₃ à 876 K; $\rho = \infty$.

Estimation de ΔH_2 $(Na_2O)_{876} \rightarrow ((Na_2O))_{2PbO-B_2O_3,876}$

- Na₂O étant très réactif cette enthalpie ne peut pas être mesurée directement
- Une enthalpie de chute dissolution à 975 K publiée par (Kiseleva, Navrotsky, Belitsky, & Fursenko, 1996), a été obtenue en passant par le carbonate, plus facile à manipuler que l'oxyde

$$Na_2O\rangle_{298} \rightarrow ((Na_2O))_{2PbO-B_2O_3,975}$$

- ⁹⁷⁵ (Kiseleva et al., 1996)
- D'après les données JANAF :

$$\langle Na_2 O \rangle_{298} \rightarrow (Na_2 O)_{975}$$

• On en déduit :

$$Na_{2}O)_{975} \rightarrow ((Na_{2}O))_{2PbO-B_{2}O_{3},975} \qquad \Delta H_{c} = \Delta H_{a} - \Delta H_{b} \\ \Delta H_{c} = -113,10 - 115,94 = -229,04 \, kJ \, mol^{-1}$$

• En faisant l'hypothèse raisonnable que cette enthalpie de dissolution isotherme reste constante entre 975 et 876 K :

$$\Delta H_2 = \Delta H_c = -229,04 \, kJ \, mol^{-1}$$

 $\Delta H_a = -113, 10 \pm 0,83 \, kJ/mol$

 $\Delta H_{b} = 115,94 \, kJ \, mol^{-1}$

Estimation de ΔH_4 $(SiO_2)_{876} \rightarrow (SiO_2)_{876}^{verre}$

• D'après Richet et al. (1982)

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Enthalpie de mélange dans le liquide

• Adapté d'après Lambotte et Chartrand (2011)

Enthalpie partielle de mélange $\Delta \overline{H}_{Si0_2}$ dans le liquide par calorimétrie de réaction directe à haute température

 Mesures de Morishita et al. (2004) avec calorimètre Setaram HT-1500 à 1465 et 1663 Κ
 Thermodynamic Cycle for Calculating ΔH
_{SiOn}

D'après Lambotte et Chartrand (2011)

FIGURE 3. Calculated partial enthalpies of mixing of Na₂O and SiO₂ in the (Na₂O + SiO₂) system. Experimental data: \Diamond 1465 K and \bigcirc 1663 K [83].

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Détermination de ∆_{mix}H du liquide par calorimétrie de dissolution isotherme en bain acide

- D'après Hovis et al. (2004) :
 - Dissolution d'échantillons de verres en solution aqueuse de HF à 50°C
 - les points expérimentaux de Hovis et al. sont été ajustés à une valeur de T fictive = 1000 K correspondant à l'état liquide, les points extraits des autres études ne sont pas ajustés

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

Mesures d'activité de Na₂O

- D'après Lambotte et Chartrand (2011)
 - Plus de 20 études expérimentales recensées utilisant diverses méthodes d'équilibres hétérogènes : pesée-effusion, spectrométrie de masse d'effusion, méthode de transpiration, mesure de FEM...

Aix*****Marseille

université

Estimation des grandeurs thermodynamiques de Na₂O vitreux hypothétique

Incrément enthalpique

En utilisant l'hypothèse d'additivité sur les incréments enthalpique du verre, méthode de Golczewski et al. (1998)

N = NS2 - 2S

lissage de Richet et al. (1982) Validité de la méthode à tester en utilisant les données d'incréments enthalpiques de verres à d'autres compositions binaires

Quelle T_a pour Na_2O ?

- Différentes méthodes d'estimation envisageables •
- Règle de Beaman-Kauzmann : $T_g = \frac{2}{3}T_m = \frac{2}{3} \times 1405 = 937 K$
- Extrapolations à concentration nulle en SiO₂ de propriétés de verres binaires
 - Mesures de T_a
 - Mesures de viscosité en considérant $T_g = T(\eta = 10^{13} \text{ poise})$

 - Difficulté = c'est une extrapolation à longue portée car les mesures ne couvrent que l'intervalle 50-100 % SiO₂

universit

Limites et évolutions du « 2-state model »

Critiques du 2-state model

• Dans le système Na₂O-SiO₂ le rapport Prigogine-Defay :

п_	$\frac{\Delta \boldsymbol{C}_{p} \Delta \boldsymbol{\kappa}_{T}}{\sum} 1$	
11-	$\overline{T_g V_{T_g} (\Delta \alpha)^2} > 1$	

- Le 2-state model, qui ne fait intervenir qu'une seule variable interne, sera a priori insuffisant si l'on souhaite modéliser l'effet de la pression, en plus de celui de la température, sur l'énergie libre du liquide et du verre
 - Cette limite ne sera pas pénalisante si l'objectif de modélisation est restreint au domaine des basses pressions
- Dans le cadre du 2-state model, le C_p de configuration s'exprime sous la forme

$$\frac{\boldsymbol{C}_{p}^{conf}}{\boldsymbol{R}} = \left(\frac{\Delta \boldsymbol{H}_{d}}{\boldsymbol{R}\boldsymbol{T}}\right)^{2} \frac{\exp\left(-\Delta \boldsymbol{G}_{d}/\boldsymbol{R}\boldsymbol{T}\right)}{\left(1 + \exp\left(-\Delta \boldsymbol{G}_{d}/\boldsymbol{R}\boldsymbol{T}\right)\right)^{2}}$$

 (Nemilov 1995) souligne que cette fonction ne rend pas bien compte des évolutions des courbes expérimentales sur un large intervalle de température Evolution de Π en fonction de la teneur en oxyde alcalin dans Na₂O-SiO₂ (1, 2) et K₂O-SiO₂ (3) d'après (Nemilov, 1995)

Variantes du 2-state model

• Angell et Rao (1972) ont proposé d'introduire une dépendance en température de la différence d'enthalpie entre les deux états sous la forme :

 $\Delta H_d(T) = \Delta H_0 + \Delta H_1(T) \quad \text{avec} \quad \Delta H_1(T) = \frac{\Delta H_1(0)}{1 + \exp((T - T_r)/D)}$

- Des variantes dans lesquelles les constituants de la solution líquide forment une solution non idéale ont été développées pour traiter
 - une solution vitreuse quaternaire d'oxydes (Golczewski, Seifert, and Aldinger 1998)
 - la séparation de phase liquide/liquide dans l'eau surfondue (C. Austen Angell 1971), (Holten and Anisimov 2012), (Biddle et al. 2017)
- Exemple : modèle à 2 états de Holten et Anisimov (2012), l'eau surfondue = mélange de 2 liquides, A de densité élevé et B de densité faible

$$G = G^{A} + xG^{BA} + RT(x\ln x + (1-x)ln(1-x) + \omega x(1-x))$$

x = fraction de molécules d'eau dans la structure B

 $G^{A}(T, p)$ = enthalpie libre molaire de la structure A

 $G^{BA}(T, p)$ = différence d'enthalpie libre entre les 2 états

 $\omega(p)$ = paramètre d'interaction décrivant la non idéalité de l'entropie de mélange

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

42

Aix+Marseille

Perspectives : extension à B₂O₃

Modélisation 1-state de B₂O₃ d'après Decterov et al. (2012)

 $C_P (\text{in J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}) = a + b(10^{-3}) T + c(10^5) T^{-2} + d(10^{-9}) T^2 + eT^{-0.5} + f(10^8) T^{-3}$

Compound	$\Delta H_{298.15}^{0}$	S ^o _{298.15}	а	b	С	d	е	f
B ₂ O ₃ (liquid)								
298–484 K 484–557 K 557–2000 K	-1 253 359 -1 214 072 -1 264 033	77.9429 192.337 50.3148	187.0657 1263.646 127.7794	6.22849 -1299.53	7.10888 -1294.49		-2319.65 127.808	

Aix*Marseille

Modélisation 3-state de B₂O₃ d'après Leidecker et al. (1971)

- Un modèle à 2 états permet de rendre compte des évolutions de $\Delta\alpha$ et ΔC_p en fonction de T
- Un modèle à 3 états est nécessaire pour prendre en compte les évolutions de la compressibilité isotherme

Institut Matériaux Microélectronique Nanosciences Provence UMR 7334, CNRS, Universités d'Aix-Marseille (AMU) et de Toulon (UTLN)

