

JOURNÉES VERRE 2024

13 - 15 Novembre 2024

UNION POUR LA SCIENCE & LA TECHNOLOGIE VERRIÈRES

DURABILITÉ CHIMIQUE DES VERRES INDUSTRIELS

Frédéric Angeli, Léa Brunswic, Stéphane Gin, Thibault Charpentier, Daniel Neuville, Eric van Hullebusch, Laurent Gautron, Xavier Capilla, Daniel Coillot, Ilyes Ben Kacem, Justine Fenech, Johann Brunie

Historique

Depuis les années 2010, par l'intermédiaire du GDR Verres et l'USTV, des collaborations ont été initiées entre des industriels verriers et la communauté du verre autour des problématiques REACh et contact alimentaire

 Des ateliers scientifiques et colloques ont été organisés à Avignon (USTV, GDR et CEA) en 2014, à Paris en 2013 et 2018 (IPGP)

Premiers travaux exploratoires puis poursuite par l'intermédiaire début 2019, d'un projet ANR de 4 ans

Structure and durability of lead crystal glass ``

	mol %
SiO	77.1
Na ₂ O	0.8
Sb ₂ O ₂	0.2
K ₂ 0	11.3
PhO	10.6

Comparison with binary lead silicate glasses (Lee and Kim*)

71PbO-29SiO₂ 67PbO-33SiO₂ 60PbO-40SiO₂

No contribution corresponding to Si-O-Pb and Pb-O-Pb

The Si-O-(Pb,K) **line position** give information about the **proportion of Pb and K** in the mixing site

> *Lee and Kim, *J. Phys. Chem. C* 119, 748 (2015)

cea

Influence of Pb content on glass structure

MAS dimension (ppm)

Chemical durability of lead crystal glass

- □ Alteration layer: 3 areas
- \rightarrow hydrated glass, alkalis depletion zone, Pb-depleted external surface

Progress of hydration front in the pristine glass, greater H incorporation compared to Na,K depletion

 Pb released to a lesser extent than alkalis (thin external surface)

Modeling of lead release in acetic acid solution

$$C_{Pb} = 3.4.10^{-2} * \frac{S}{V} * \left(e^{-\frac{E_a}{RT}} * t\right)^{\frac{1}{2}}$$

- > C_{Pb} : concentration of lead in solution (**m**g.L⁻¹),
- \succ *t*: leaching time (s),
- ➤ T: temperature (K),
- > E_a : activation energy (37.7 K.J.mol⁻¹),
- > V: volume of the solution (m^3) ,
- S: surface of the glass (m^2) ,
- \succ R: gas constant (8.31 J/mol⁻¹.K⁻¹).

□ Higher SA/V ratio: drift of pH

→ experimental Pb concentrations slightly lower than calculated values (lower pH)

Angeli et al., Environ. Sci. Technol. 50 (2016)

Cei

Influence of Pb content on glass dissolution

Angeli et al., in book: Lead in Glassy Materials in Cultural Heritage, Chapter 13 (2024)

cea

ANR BIGDAD - 2019 - 2023

- **Glass durability of untreated glasses**
- Effect of surface treatments
- Specific behavior of the crystallized opal glass
- Effect of a colorant on the durability of a **crystal glass with Cr**

5 widely used silicate glass from 4 major French glass manufacturers

→ most comprehensive vision of elements released in solution (with and without surface treatments)

Industrial glass composition

Lead crystal Glass B Barium glass Glass C Soda-lime Glass D Borosilicate Opal cristal. Glass A Glass O %mol % mol % mol % mol % mol 70.9 73.6 74.2 SiO₂ SiO₂ SiO₂ 77.1 SiO₂ 82.1 SiO₂ 13.0-15.0 11.9 Na₂O 5.6 Na₂O 0.8 Na₂O 8.3-10.3 Na₂O Na₂O AI_2O_3 < 1.3 4.8 11.3 < 1.3 10.7 Al_2O_3 K_2O AI_2O_3 B_2O_3 CaO 9.0-11.0 1.6 CaO 2.2 PbO 10.6 9.0-11.0 AI_2O_3 CaO 0.2 MgO 2.0-4.0 BaO 0.8 Sb_2O_3 MgO 0.5-2.5 BaO < 1.0 K_2O 1 BaO < 1.0 5.7 F_2 2.5-4.5 K_2O K_2O

POCHET DU COURVAL

Baccarat

arc

Structure and leaching of the silicate network

Leaching of the tracing element of alteration

Surface effects of coating treatments

- □ SnO₂ coating : ~ 10 nm, migration of cations into the coating depending on their ionic charge (except Pb and Mg)
- \rightarrow Dissolution of Sn coating
- □ SiO₂ coating : ~ 10 nm, no diffusion of cations in Si coating
- \rightarrow Very low dissolution of Si coating
- □ TiO₂ coating : ~ 100-500 nm, Na diffusion in external coating surface
- \rightarrow Dissolution of Ti coating

Brunswic et al., npj-MD, 8:108 (2024)

ToF-SIMS profiles of pristine glass

Surface effects of chemical treatments

Brunswic et al., npj-MD, 8:108 (2024)

ToF-SIMS profiles of pristine glass

Glass sample	$[Pb]_{SA/V}$ after 1 day	$[Pb]_{SA/V}/[Pb]_{SA/V}^{ref}$		
	$g.m^{-2}$	1 day	470 days	
A_PA	0.050	2.47	1.43	
A (ref)	0.020	1.00	1.00	
A_dSi	0.012	0.60	0.72*	
A_{dSn}	0.009	0.45	0.44	
A_dTi	0.003	0.15	0.44	
A_CEMa	0.002	0.09	0.11	
A_CEMb	0.002	0.09	0.10	

 * based on [Pb]_{SA/V} at 226 days

□ Acidic etching (acid polishing):

 → detrimental effect on glass durability (surface depolymerization in rich alkali glass)

Glass sample	$[Pb]_{SA/V}$ after 1 day	$[Pb]_{SA/V}/[Pb]_{SA/V}^{ref}$		
	$g.m^{-2}$	1 day	470 days	
A_PA	0.050	2.47	1.43	
A (ref)	0.020	1.00	1.00	
A_dSi	0.012	0.60	0.72*	
A_{dSn}	0.009	0.45	0.44	
A_dTi	0.003	0.15	0.44	
A_CEMa	0.002	0.09	0.11	
A_CEMb	0.002	0.09	0.10	

* based on [Pb]_{SA/V} at 226 days

□ Si, Sn coatings

 \rightarrow effect on the reduction of Pb release is moderate

Glass sample	$[Pb]_{SA/V}$ after 1 day	$[Pb]_{SA/V}/[Pb]_{SA/V}^{ref}$		
	$g.m^{-2}$	1 day	470 days	
A_PA	0.050	2.47	1.43	
A (ref)	0.020	1.00	1.00	
A_dSi	0.012	0.60	0.72^{*}	
A_dSn	0.009	0.45	0.44	
A_dTi	0.003	0.15	0.44	
A_CEMa	0.002	0.09	0.11	
A_CEMb	0.002	0.09	0.10	

* based on [Pb]_{SA/V} at 226 days

□ TiO₂ coating

- → acts as a diffusion barrier (same effect for other glass cations)
- → linear increase of Pb (some of the coating is also leached)

Glass sample	$[Pb]_{SA/V}$ after 1 day	$[Pb]_{SA/V}/[Pb]_{SA/V}^{ref}$		
	$g.m^{-2}$	1 day	470 days	
A_PA	0.050	2.47	1.43	
A (ref)	0.020	1.00	1.00	
A_dSi	0.012	0.60	0.72*	
A_{dSn}	0.009	0.45	0.44	
A_dTi	0.003	0.15	0.44	
A_CEMa	0.002	0.09	0.11	
A_CEMb	0.002	0.09	0.10	

 * based on [Pb]_{SA/V} at 226 days

□ SO₂ dealkalization (most efficient)

- \rightarrow considerably reduces lead release
- $\rightarrow\,$ lasts over time
- \rightarrow **reproducibility** between both industrial procedures

□ SO₂ dealkalization and TiO₂ coating

 \rightarrow dividing 5 times the reduction of **Ba concentration**

	% mol
SiO ₂	82.1
Na ₂ O	5.6
B_2O_3	10.7
Al ₂ O ₃	1.6

- □ Very low effectiveness of surface treatments for borosilicate glasses not subjected to interdiffusion
- Dealkalization is detrimental for maintaining the coordination of B and AI

Opal crystallized glass plates

Effect on the distribution of crystals (\rightarrow cooling rate)

Effect of surface treatments on the release of Ba from opal glass

- For all amorphous glasses, acidic etching did not show beneficial effect
- For opal glass, acid etching is the best treatment for the reduction of Ba leaching
 - → removes the surface less durable layer enriched in Na revealing the underlying crystals
 - → glass with crystals and a lower Na is more resistant to alteration than the initial surface

The case of chromium in lead crystal glass

= 0.028 mol %

Cr(III) : green, commonly used as colorant	Cr(VI) : yellow, very mobile and toxic
$Cr_2O_3 - Cr^{3+}$	CrO ₃ – Cr ⁶⁺

wt%	Si	Pb	К	Na	Cr
BAC	26.76	26.87	10.21	0.47	0.000
BAC_Cr50	26.85	26.53	10.08	0.48	0.003
BAC_Cr250	26.84	26.66	10.04	0.47	0.011
BAC_Cr500	26.89	25.86	10.21	0.47	0.024
BAC_Cr2000	26.81	26.60	10.14	0.46	0.052
					5

cea

Speciation of chromium in lead crystal glasses

Speciation of chromium in lead crystal glasses

- Peak position at 5.9935 eV for Cr(VI) references
- Cr(III) only is detected in pristine Cr-bearing glasses (confirmed by optical absorption spectroscopy)

Speciation of chromium in lead crystal glasses

Peak position at 6.0075 eV for Cr(III) reference

- Peak position at 5.9935 eV for Cr(VI) references
- Cr(III) only is detected in pristine Cr-bearing glasses (confirmed by optical absorption spectroscopy)
- Cr³⁺ only, stable during alteration

Leaching of lead crystal glass with Cr

Relationships between structure and durability of Cr-bearing lead crystal glass

²⁰⁷Pb static NMR

Spectra are normalized to the same sample mass

□ Pb NMR intensity signal increases with Cr content

Cr (paramagnetic): increases Pb relaxation time, and then the spectra intensity

 \rightarrow proximity between Pb and Cr

Impact of Cr on the structure of lead crystal glass during alteration

Conclusions

□ Unique database on the **leaching behavior of industrial glass**

 Commercial glass products: resistant and durable materials towards aggressive leaching alteration (> 1000 days)

Overview of the most suitable surface treatments to limit cation release

- Dealkalization surface treatments last over time: maintained while the thickness of the altered glass (700 nm) is greater than that of the treated layer (300 nm)
- □ Local structural configuration of potentially problematic cations
 - > Correlations with **cation retention in glass**

