

DIJON

Frédéric Angeli, Léa Brunswic, Stéphane Gin, Thibault Charpentier, Daniel Neuville, Eric van Hullebusch, Laurent Gautron, Xavier Capilla, Daniel Coillot, Ilyes Ben Kacem, Justine Fenech, Johann Brunie

Historique

□ Depuis les années 2010, par l'intermédiaire du GDR Verres et l'USTV, des collaborations ont été initiées entre des industriels verriers et la communauté Corique

Depuis les années 2010, par l'intermédiaire du GDR Verres et l'USTV, des

collaborations ont été initiées entre des industriels verriers et la communauté

du verre autour des problématiques REACh et contact alimen

□ Des ateliers scientifiques et colloques ont été organisés à Avignon (USTV, GDR et CEA) en 2014, à Paris en 2013 et 2018 (IPGP)

 Premiers travaux exploratoires puis poursuite par l'intermédiaire début 2019, d'un projet ANR de 4 ans

Structure and durability of lead crystal glass
Baccarat **Report of Structure and durability of lead crystal glass**

17O MQMAS NMR

Comparison with binary lead silicate glasses (Lee and Kim*)

 $71PbO-29SiO₂$ $67PbO-33SiO₂$ 60 $PbO-40SiO₂$

No contribution corresponding to Si-O-Pb and Pb-O-Pb

Comparison with binary

ead silicate glasses

Lee and Kim*)

71PbO-29SiO₂

67PbO-33SiO₂

60PbO-40SiO₂

No contribution

No contribution

Corresponding to

The Si-O-(Pb,K) **line position**

The Si-O-(Pb,K) **line positi** Comparison with binary

ead silicate glasses

Lee and Kim^{*})

71PbO-29SiO₂

67PbO-33SiO₂

60PbO-40SiO₂

No contribution

corresponding to

No contribution

corresponding to

The Si-O-Pb and Pb-O-Pb

The Si-O-(Pb,K) Comparison with binary

ead silicate glasses

Lee and Kim^{*})

71PbO-29SiO₂

67PbO-33SiO₂

60PbO-40SiO₂

No contribution

corresponding to

Si-O-Pb and Pb-O-Pb

The Si-O-(Pb,K) **line position**

give information about Comparison with binary

ead silicate glasses

Lee and Kim^{*})

71PbO-29SiO₂

67PbO-33SiO₂

60PbO-40SiO₂

Mo contribution

corresponding to

Si-O-Pb and Pb-O-Pb

The Si-O-(Pb,K) **line position**

give information abou

J. Phys. Chem. C 119, 748 (2015)

<u>cea</u>

Influence of Pb content on glass structure

Chemical durability of

- Alteration layer: 3 areas
- \rightarrow hydrated glass, alkalis depletion zone, Pb-depleted external surface
- \square Progress of hydration front in the pristine glass,
- (thin external surface) profiles (1-53 days, Si_{sat})
 \Box Pb released to a lesser extent than alkalis

Modeling of lead release in acetic acid solution Good agreement between calculation of Pb concentrations and experimental data

Ecood agreement between calculation of Pb concentrations and experimental data

$$
C_{Pb} = 3.4.10^{-2} * \frac{S}{V} * (e^{-\frac{E_a}{RT}} * t)^{\frac{1}{2}}
$$

\n
$$
C_{Pb}
$$
: concentration of lead in solution (mg.L⁻¹),
\n
$$
C_{Pb}
$$
: the
\n
$$
C_{Pb}
$$
: concentration of lead in solution (mg.L⁻¹),
\n
$$
C_{Pb}
$$
: the
\n
$$
C_{Pb}
$$
:

-
- t: leaching time (s),
- T: temperature (K),
- \triangleright E_a : activation energy (37.7 K.J.mol⁻¹), ζ
- \triangleright V: volume of the solution (m³).),
- S: surface of the glass (m^2) , $\qquad \qquad 1.E-01$),
- \triangleright R: gas constant (8.31 J/mol⁻¹.K⁻¹).

□ Higher SA/V ratio: drift of pH

lower than calculated values (lower pH)

Angeli et al., Environ. Sci. Technol. 50 (2016)

Angeli et al., in book: Lead in Glassy Materials in Cultural Heritage, Chapter 13 (2024)

 $\underline{\alpha}$

ANR BIGDAD – 2019 - 2023
 \Box Glass durability of untreated glasses

- **□** Glass durability of untreated glasses
- \Box Effect of surface treatments
- \Box Specific behavior of the crystallized opal glass
- □ Effect of a colorant on the durability of a crystal glass with Cr

5 widely used silicate glass from 4 major French glass manufacturers

 \rightarrow most comprehensive vision of elements released in solution (with and without surface treatments)

Industrial glass composition

% mol $\sin 2 \left| 77.1 \right|$ $\sin 2 \left| 50 \right|$ **ndustrial glass composition**

SiO₂ 77.1

Na₂O 0.8

Fead Cystal SiO₂ 74.2

Na₂O 0.8

Na₂O 8.3-10.3

PbO 10.6

Dave 2.0

Ma₂O 9.0-11.0

Dave 2.0

Ma₂O 9.0-11.0

Dave 2.0

Ma₂O 9.2

Ma₂O 9.0-11.0

Dave 2.0 **ndustrial glass composition**

SSA Lead crystal Glass B Barium glass Glass C Society

SiO₂ 77.1 SiO₂ 74.2 SiO₂ 7

Ma₂O 0.8 Na₂O 8.3-10.3 Na₂O 13.

M₂O 11.3 Al₂O₃ < 1.3 Al₂O₃ < 1.6 CaO 9.0-11.0 CaO 9. **1dustrial glass composition**

SIG₂ 77.1 SiG₂ 74.2 SiG₂ 7

Na₂O 0.8 Na₂O 8.3-10.3 Na₂O 11.3 Al₂O₃ Case C 9.0

PbO 10.6 CaO 9.0-11.0 CaO 9.C

BaO 0.5-2.5 BaO <

R₂O 2.5-4.5 K₂O 2.5

R₂O 2.5-4.5 K₂O Sb_2O_3 0.2 % mol 74.2 \vert SiO₂ \vert 70.9 **ass B** Barium glass
 ass B Barium glass
 a Glass C Soda-lime
 a Glass D B
 a Glass C Soda-lime
 a Glass D B
 b
 o Glass D B
 b
 o Glass D B
 o SiO₂
 b
 y Ma₂O
 o SiO₂
 **Na₂O

Na₂O

D** Al_2O_3 < 1.3 Al_2O_3 < 1.3 B_2O_3 10.7 **ass B** Barium glass C Class C Soda-lime Class D Bota

SiO₂ 74.2 SiO₂ 70.9 SiO₂

Na₂O 8.3-10.3 Na₂O 13.0-15.0 Na₂O 1.3 Na₂O 9.0-11.0 Na₂O 9.0-11.0 MgO 2.0-4.0

NgO 9.5-2.5 BaO < 1.0

K₂O 2.5-4.5 K₂O < MgO | MgO | 2.0-4.0 **ass B** Barium glass c Soda-lime Class D Bo
 $\frac{\% \text{ mol}}{\% 20}$ 74.2 SiO₂ 70.9 SiO₂ 8.3-10.3 Na₂O 3.3-10.3 Na₂O 13.0-15.0 Na₂O 9.0-11.0 CaO 9.0-11.0 MgO 2.0-4.0 R₂O 2.5-4.5 RaO < 1.0 **ass B** Barium glass Glass C Soda-lime Glass D Bo

SiO₂ 74.2 SiO₂ 70.9 SiO₂ 8.3-10.3 Na₂O 8.3-10.3 Na₂O 13.0-15.0 Na₂O 13.0-15.0 Na₂O 14.2O₃ C 1.3 Al₂O₃ C 1.3 Al₂O₃ C 1.3 Al₂O₃ C 1.3 Ma₂O 1.0 % mol $\, \text{SiO}_{2} \,$ 70.9 $\,$ $\,$ SiO $_{2}$ $\,$ 82.1 $\,$ $\,$ SiO $_{2}$ $\,$ 73.6 **Sition**

Siass C | Soda-lime | Class D | Borosilicate | Class O | O|
 $\frac{\% \text{ mol}}{\text{NiO}_2}$ | $\frac{70.9}{70.9}$ | SiO₂ | 82.1 | SiO₂ | Na₂O | 13.0-15.0 | Na₂O | 5.6 | Na₂O | Al₂O₃ | <1.3 | B₂O₃ | 10.7 | Al **Sition**

lass C Soda-lime Glass D Borosilicate Glass O Op
 $\frac{\% \text{ mol}}{\% 20}$ = $\frac{70.9}{70.9}$ = $\frac{\$iO_2$ = $\frac{82.1}{10.2}$ = $\frac{\$iO_2$ = $\frac{82.1}{10.2}$ = $\frac{\$iO_2$ = $\frac{82.1}{10.2}$ = $\frac{\$iO_2$ = $\frac{10.2}{10.2}$ = **Sition**

Mass C Soda-lime Glass D Borosilicate Glass O Opa

Ma₂O 70.9 SiO₂ 82.1 SiO₂ 7

Ma₂O 13.0-15.0 Na₂O 5.6 Na₂O 1

CaO 9.0-11.0 Al₂O₃ 10.7 Al₂O₃ Al₂O₃ C

CaO 9.0-11.0 Al₂O₃ 1.6 CaO BaO < **Sition**

ass C soda-lime Class D Borosilicate Class O Opal
 $\frac{\% \text{ mol}}{\% 13.0 \text{ - } 15.0}$
 $\frac{\% \text{ mol}}{\% 20}$ 5.0
 $\frac{\% \text{ mol}}{\% 20}$ 5.6
 $\frac{\% \text{ mol}}{\% 2$ **Sition**

lass C | Soda-lime | Glass D | Borosilicate | Glass O | Opal

SiO₂ | 70.9 | SiO₂ | 82.1 | SiO₂ | 73

Na₂O | 13.0-15.0 | Na₂O | 5.6 | Na₂O | 11

N₂O₃ | <1.3 | B₂O₃ | 10.7 | Al₂O₃ | 4

MgO % mol **SS D** Borosilicate Glass O Opal cristal.
 SiO₂ 82.1

Na₂O 5.6 Na₂O 11.9

B₂O₃ 10.7 Al₂O₃ 4.8

Al₂O₃ 1.6 CaO 2.2

BaO 0.8 B_2O_3 10.7 Al_2O_3 4.8 Al_2O_3 1.6 CaO 2.2 %mol $SiO₂$ 73.6 N

SiO₂ Depal cristal.

SiO₂ 73.6

Na₂O 11.9

Al₂O₃ 4.8

CaO 2.2

BaO 0.8 SiO 2 Deal cristal.

SiO₂ 73.6

Va₂O 11.9

N₂O₃ 4.8

CaO 2.2

BaO 0.8

K₂O 1

F₂ 5.7 SSO Opal cristal.

SSO Opal cristal.

SIO₂ 73.6

Na₂O 11.9

Al₂O₃ 4.8

CaO 2.2

BaO 0.8

K₂O 1

F₂ 5.7 SIO₂ Depal cristal.

SiO₂ 73.6

Va₂O 11.9

Va₂O 11.9

CaO 2.2

BaO 0.8

K₂O 1

F₂ 5.7 F_2 5.7

Baccarat

PYREX

NV

Structure and leaching of the silicate network

Leaching of the tracing element of alteration

si sn Ti Pa Central Surface effects of coating treatments

 \Box **SnO₂ coating** : ~ 10 nm, migration of cations into the coating \Box Surface eoatings

Vertace coatings
 \Box SnO₂ coating : ~ 10 nm, migration of cations into the coating
 \Box SnO₂ coating on their ionic charge (except Pb and Mg)
 \Box SiO₂ coating : ~ 10 nm, no diffusion of cation **Brunswic et al., npj-MD, 8:108 (2024)**

Brunswic et al., npj-MD, 8:108 (2024)
 Brunswic et al., npj-MD, 8:108 (2024)

To $\frac{1}{\sqrt{2}}$ Coating

Brunswic et al., npj-MD, 8:108 (2024)
 Brunswic et al., npj-MD, 8:108 (202

)

Dealkalization

- \rightarrow Dissolution of Sn coating
- \square SiO₂ coating : ~ 10 nm, no diffusion of cations in Si coating \square
-
- **TiO₂ coating** : ~ 100-500 nm, Na diffusion in external coating surface $\frac{1}{2}$
- \rightarrow Dissolution of Ti coating

Si Sn Ti PA CEMa CEMb | Surface effects of chemical treatments

 $*$ based on $[Pb]_{SAV}$ at 226 days

□ Acidic etching (acid polishing):

 \rightarrow detrimental effect on glass durability

 $*$ based on $[Pb]_{SA/V}$ at 226 days

□ Si, Sn coatings

Chemical reactions **Effects of surface treatments**

 $*$ based on $[Pb]_{SA/V}$ at 226 days

\Box TiO₂ coating

- \rightarrow acts as a diffusion barrier (same effect for other glass cations)
- \rightarrow linear increase of Pb

Effects of surface treatments
 $\begin{array}{cc}\n\bullet\n\bullet\n\end{array}$
 $\begin{array}{cc}\n\bullet\n\end{array}$
 $\begin{array}{cc}\n\text{Active: } & \text{Class sample} \\
\bullet\n\end{array}$
 $\begin{array}{cc}\n\text{Class sample: } & \text{[Pb]}_{SA/V} \text{ after 1 day} \\
\bullet\n\end{array}$
 $\begin{array}{cc}\n\text{[Pb]}_{SA/V} / & \text{[Pb]}_{SA/V} \text{ [Pb]}_{SA/V} \\
\bullet\n\end{array}$ Effects of surface treatments

Acetic acid
 $A = 2.4, 70^{\circ}$
 $\frac{AC + 2.4, 70^{\circ}C}{C}$
 $\frac{AC + 2.5 \text{ m}^{-1}}{A}$
 $\frac{AC + 2.5 \text{ m}^{-1}}{A}$
 $\frac{AC + 2.5 \text{ m}^{-2}}{A}$
 $\frac{AC + 2.5 \text{ m}^{-2}}{A}$
 $\frac{AC + 2.5 \text{ m}^{-2}}{A}$
 $\frac{AC + 2.5 \text{ m$ Acetic acid

pH = 2.4, 70°C
 $\begin{array}{ccc} \text{Glass sample} & \text{[Pb]}_{SA/V} \text{ after 1 day} \\ \text{g.m}^{-2} & \text{g.m}^{-2} \end{array}$ $\left| \text{S/V} = 2.5 \text{ m}^{-1} \right|$

 $*$ based on $[Pb]_{SAV}$ at 226 days

\square SO₂ dealkalization (most efficient)

- \rightarrow considerably reduces lead release
- \rightarrow lasts over time
- \rightarrow reproducibility between both industrial procedures

Effects of surface treatments Effects of surface treatments
Acetic acid
H= 2.4, 70°C
X/V = 2.5 m⁻¹
~ 500 days Chemical reactions **Effects of surface treatments**

\square SO $_2$ dealkalization and TiO $_2$ coating

 \rightarrow dividing 5 times the reduction of **Ba concentration**

% mol SiO_2 82.1 **Example 14.8**
 Example 14.8

 \Box Very low effectiveness of surface treatments for borosilicate glasses not subjected to interdiffusion **SiO₂** 82.1

Na₂O 5.6

B₂O₃ 10.7

Al₂O₃ 1.6

Dealkalization is detrimental for maintaining

the coordination is detrimental for maintaining

the coordination of B and Al

 B_2O_3 10.7

 Al_2O_3 1.6

the coordination of B and Al

**Effect of surface treatments on
the release of Ba from opal glass the release of Ba from opal glass**

- \Box For all amorphous glasses, acidic etching did not show beneficial effect
- \Box For opal glass, acid etching is the best treatment for the reduction of Ba leaching
	- \rightarrow removes the surface less durable layer enriched in Na revealing the underlying crystals
- \rightarrow glass with crystals and a lower Na all amorphous glasses, acidic etching
into show beneficial effect
ppal glass, acid etching is the best
tment for the reduction of Ba leaching
removes the surface less durable
layer enriched in Na revealing the
underlying c the initial surface

The case of chromium in lead crystal glass **Property of the Set of S m in lead crystal glass**

 $rac{ca}{2}$

Speciation of chromium in lead crystal glasses

Speciation of chromium in lead crystal glasses

for Cr(III) reference

- □ Peak position at 5.9935 eV for Cr(VI) references
- <table>\n<tbody>\n<tr>\n<td>□ Peak position at 6.0075 eV</td>\n<td>⇒</td>\n</tr>\n<tr>\n<td>for Cr(III) reference</td>\n<td>⇒</td>\n</tr>\n<tr>\n<td>□ Peak position at 5.9935 eV</td>\n<td>⇒</td>\n</tr>\n<tr>\n<td>for Cr(VI) references</td>\n<td>⇒</td>\n</tr>\n<tr>\n<td>□ Cr(III) only is detected in
pristine Cr-bearing glasses</td>\n<td>⇒</td>\n</tr>\n<tr>\n<td>(confirmed by optical
absorption spectroscopy)</td>\n<td>⇒</td>\n</tr>\n</tbody>\n</table> absorption spectroscopy)

Speciation of chromium in lead crystal glasses

- for Cr(III) reference
- \Box Peak position at 5.9935 eV for Cr(VI) references
- <p>□ Peak position at 6.0075 eV for Cr(III) reference for Cr(III) reference</p>\n<p>□ Peak position at 5.9935 eV for Cr(VI) references</p>\n<p>□ Cr(III) only is detected in pristine Cr-bearing glasses (confirmed by optical absorption spectroscopy)</p>\n<p>□ Co3³th orbit of this charge</p> absorption spectroscopy)
- \Box Cr³⁺ only, stable during alteration

Leaching of lead crystal glass with Cr

Relationships between structure and durability of Cr-bearing lead crystal glass Pb NMR intensity signal increases with Cr content

Spectra are normalized to the same sample mass

Cr (paramagnetic): increases Pb relaxation time, and then the spectra intensity **Crystal glass**
 \Box Pb NMR intensity signal increases with Cr content

Cr (paramagnetic): increases Pb relaxation time,

and then the spectra intensity
 \rightarrow proximity between Pb and Cr

Impact of Cr on the structure of lead crystal **Impact of Cr on the structure of lead
glass during alteration**
a Increase of polymerization in the altered layer
that adds to the diffusive barrier effect to limit the

Conclusions

□ Unique database on the leaching behavior of industrial glass

 \triangleright Commercial glass products: resistant and durable materials towards aggressive leaching alteration (> 1000 days)

\Box Overview of the most suitable surface treatments to limit cation release

- **Lusions**

Surface on the leaching behavior of industrial glass

Deaching alteration (> 1000 days)

Nerview of the most suitable surface treatments to limit cation release

Dealkalization surface treatments last over time: of the altered glass (700 nm) is greater than that of the treated layer (300 nm)
- \Box Local structural configuration of potentially problematic cations
	- \triangleright Correlations with cation retention in glass

