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Motivations. Simulation details

Silicate glasses:

@ No doubt that we are now living in the Glass Age

@ Increasing need to control the glass properties and their
mechanical reliability

e Silicate glasses have many exceptional properties BUT they are
brittle!

@ Fracture and deformation properties probed in a considerable
number of experimental and computational studies
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Silicate glasses

Archetypical brittle materials (macroscopic scale)
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@ Glass fracture: a multiscale phenomenon, involving different
mechanisms

@ Microscopic mechanisms of glass fracture and deformation are still
under debate.
Is fracture accompanied by the formation/growth and coalescence of
microscopic cavities?

@ More microscopic insights are needed to understand glass fracture and
deformation
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Silicate glasses

Archetypical brittle materials (macroscopic scale)
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@ Glass fracture: a multiscale phenomenon, involving different
mechanisms

@ Microscopic mechanisms of glass fracture and deformation are still
under debate.

@ More microscopic insights are needed to understand glass fracture and
deformation
Use large scale computer simulations to obtain a deeper
understand of glass fracture



Large scale molecular dynamics simulations

Compositions, potential choice & system size

@ Compositions
> pure silica
» sodium binary silicates
Na,O - xSiO, (NSx, x =20,10,7,5,4, 3, i.e. from 5 to 25% mol)
» alkali binary silicates
A0 - 3 SiO, (AS3), A=Li, Na, or K (25% mol)

@ SHIK pair potential
ﬂ

24
i i

V(rj) =

qf’ + Ajexp (~Bjrj) — = +
i

Sundararaman, Huang, Ispas & Kob, JCP 148 (2018) & 150 (2019)
@ System size: up to 2.3 milion atomes, 20nmx30nm x50nm
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Motivations. Simulation details

Large scale molecular dynamics simulations

Simulation protocol

Bulk sample — Sandwich 1st High temperature equilibration: bulk

' liquid sample + introduction of vacuum
layers

= sandwich sample with free dry
surfaces

2nd Quench and relaxation at 300 K
3rd Fracture sample using tensile stress

(dynamic fracture, 0.5 ns~1)
= fracture surface (FS)

Fracture

Z. Zhang Phd Thesis, Univ. Montpellier, 2020
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Dynamic fracture Stress-strain response

Dynamic fracture: composition dependence

Crack velocity i |s fast and thus environment has no |mpact
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@ With increasing Na concentration glass becomes more ductile
(increasing failure strain)

@ Significant variation of crack velocity with Na concentration; 10% Na,O
threshold composition
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Dynamic fracture Stress-strain response

Failure point: composition dependence
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@ Composition influences strongly the failure point
@ Experimental trend reproduced

@ Surface flaw: reduction of failure strain for the sandwich glasses.

Sim. bulk data: Zhang, Ispas & Kob Acta Mater. 231 (2022)
Exp. Lower et al. JNCS (2004)
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Dynamic fracture Cavitation

Silica glass: completely brittle
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Dynamic fracture Cavitation

Sodium rich glass NS3: quasi-brittle

(b) €=0.000 £=0.160 £=0.172 £=0.192 £=0.210
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Dynamic fracture Cavitation

Sodium rich NS3 glass: voids

A large void
41 NS3 glass €=0.196
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y: out-of-plane direction

@ Voids grow to several nanometers and have very irregular shapes

@ Hard to detect the voids by comparing post-mortem fracture
surfaces
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Evolution of atomic-level properties

Atomic-level properties

Na fraction: fy, = Na/Niot (NnOminal fy = 0.167 for NS3)
Local network connectivity: Zg;si, Zosi

Angular change: A#(SiOSi), (reference: strain=0)
2Eyin
3Nkg

Tensile stress: component of the per-atom stress tensor in the
pulling direction

Temperature: T =

(kinetic energy — T)
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Local properties are heterogeneous

(a) Silica; £ =0.101
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@ Silica: more stress concentration & local heating (7; > 1200 K)
@ NS3: more heterogeneity & dissipation (T ~ 700 K)
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Evolution of atomic-level properties

Local properties are correlated (Na rich glass)

rs = Spearman’s rank correlation coefficient
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@ Strong correlations among the local elemental concentrations and
network connectivity

@ Na-rich regions more flexible/depolymerized: lower the stress & promote
plastic deformation

@ Increasing correlation between A§(SiOSi) and stress due to the
activation of soft modes
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Surface topography: melt formed vs fracture surface

Large scale molecular dynamics simulations

Simulation protocol

'=b ._ 1st High temperature equilibration: bulk
g, T

liquid sample + introduction of vacuum

=1 Tensie [t |ayel‘5
- 4.# — sandwich sample with free dry

surfaces

Melt-furme:i surface 2nd Quench and relaxation at 300 K
= melt formed surface (MS)

3rd Fracture sample using tensile stress
(dynamic fracture, 0.5 ns—')
= fracture surface (FS)

Fracture surface
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Surface topography: melt formed vs fracture surface

Surface topography: melted vs fracture surface

(a) Silica (MS) (b) NS10 (MS) ) (c) NS3 (MS)
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Morphology depends on surface type & composition
Zhang, Ispas & Kob, PRL 126 (2021)
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Surface topography

Roughness: peaks & valleys
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MS weak dependence
on Na content

FS rougher than MS
and rougher with
increasing Na content

@ MS more deep holes

@ Intrinsic roughness:

frozen capillary waves

prediction
Exp.:Gupta et al. 2000
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Surface topography: melt formed vs fracture surface

Scaling properties at the nanoscale

1D height-height correlation function

Az(r) = \/([z{r +x) - z(x)]2),

FS 183: x

_linear-log

T NS3: y |

Silica: x

Silica: y 1

o a0 10 40
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Melt surface Fracture surface
— isotropic — anisotropic and composition depen-
— capillary wave theory works well ~ dent
— logarithmic growth: Az o In(r)
(Az)?  In(r) — surface is not a fractal on these

length scales
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Spatial resolution plays a key role on the nanoscale

Fracture surface
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@ smoothing of the surface profile: one switches from a logarithmic
dependence to power-law scaling (self-affine)

Exp.: Ponson et al. 2006, Pallares et al. 2018
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Conclusions

Summary

e Dynamic fracture of silicate glasses:

» Fracture: complex phenomenon depending on multiple factors,
such as length scale, loading condition, and composition.

> Silica is completely brittle while Na-rich glasses show a certain
degree of ductility

> Exploration of spatial and temporal evolution of various atomic-level
properties: notable crack tip heating, heterogeneity and correlations
among these properties

e Surfaces of silicate glasses
> Properties of glass surface depend strongly on production history
(melt surface vs fracture surface)
> Topography of fracture surface is not a fractal on the length scale of
a few nm

Zhang, Ispas & Kob, PRL 126 (2021), PRM 6 (2022) Zhang, Ispas & Kob, JCP 153 (2020) & 158
(2023)

Z. Zhang Phd Thesis, Univ. Montpellier, 2020
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