Dynamique moléculaire $a b$ initio Généralités

Mathieu Salanne

Laboratoire PECSA
Université Pierre et Marie Curie / CNRS / ESPCI www.pecsa.upmc.fr

Ecole thématique "Modélisation des verres" - 10/05/2011

Unified Approach for Molecular Dynamics and Density-Functional Theory

R. Car

International School for Advanced Studies, Trieste, Italy
and
M. Parrinello

Dipartimento di Fisica Teorica, Università di Trieste, Trieste, Italy, and International School for Advanced Studies, Trieste, Italy
(Received 5 August 1985)
We present a unified scheme that, by combining molecular dynamics and density-functional theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics beyond the usual pair-potential approximation, thereby making possible the simulation of both covalently bonded and metallic systems. In addition it permits the application of density-functional theory to much larger systems than previously feasible. The new technique is demonstrated by the calculation of some static and dynamic properties of crystalline silicon within a self-consistent pseudopotential framework.

PACS numbers: $71.10 .+\mathrm{x}, 65.50 .+\mathrm{m}, 71.45 . \mathrm{Gm}$

editorial

A model approach to modelling

The work by Roberto Car and Michele Parrinello on ab initio molecular dynamics published 25 years ago has had a huge impact on fundamental science and applications in a wide range of fields.

Plan

Théorie de la fonctionnelle de la densité

Méthode de Car-Parrinello

Comparaison BO-CP

Exemples

Conclusion - perspectives

Plan

Théorie de la fonctionnelle de la densité

Méthode de Car-Parrinello

Comparaison BO-CP

Exemples

Conclusion - perspectives

Structure électronique

Équation de Schrödinger indépendante du temps dans le cadre de I'approximation de Born-Oppenheimer:

$$
\begin{equation*}
\mathcal{H}_{e}\left(\left\{\mathbf{R}_{l}\right\} ;\left\{\mathbf{r}_{i}\right\}\right) \psi_{k}=E_{k}\left(\left\{\mathbf{R}_{l}\right\}\right) \psi_{k}\left(\left\{\mathbf{R}_{l}\right\} ;\left\{\mathbf{r}_{i}\right\}\right) \tag{1}
\end{equation*}
$$

- \mathcal{H}_{e} Hamiltonien électronique (positions atomiques fixes $\left\{\mathbf{R}_{l}\right\}$)
- ψ_{k} Fonction d'onde à M électrons ($k=0$: état fondamental)
- Géneralement représentée avec un déterminant de Slater

$$
\begin{equation*}
\psi_{k}=\frac{1}{\sqrt{M!}} \operatorname{det}\left\{\phi_{i}\right\} \tag{2}
\end{equation*}
$$

- E_{k} surface d'énergie potentielle (fonction des positions atomiques uniquement)

Théorie de la fonctionnelle de la densité

- Théorèmes de Hohenberg-Kohn:
- L'énergie de l'état fondamental est une fonctionnelle unique de la densité électronique

$$
\begin{equation*}
n(\mathbf{r})=\sum_{i}\left|\phi_{i}(\mathbf{r})\right|^{2} \tag{3}
\end{equation*}
$$

- Cette fonctionnelle $E[n]$ est variationnelle
- $\psi\left(\left\{\mathbf{r}_{i}\right\}_{i \in M}\right)$: fonction de $3 M$ coordonnées $n(\mathbf{r})$: fonction de 3 coordonnées
- Problème: Cette fonctionnelle n'est pas connue

Méthode de Kohn-Sham

Définition d'un système de particules non-interagissantes subissant un potentiel local tel que la densité de ce système est la même que celle du système réel

$$
\begin{equation*}
E^{K S}\left[\left\{\phi_{i}\right\}\right]=E_{k i n}\left[\left\{\phi_{i}\right\}\right]+E_{e x t}[n]+E_{H}[n]+E_{x c}[n] \tag{4}
\end{equation*}
$$

4 termes

- Énergie cinétique

$$
\begin{equation*}
E_{k i n}\left[\left\{\phi_{i}\right\}\right]=\sum_{i}\left\langle\phi_{i}\right|-\frac{1}{2} \nabla^{2}\left|\phi_{i}\right\rangle \tag{5}
\end{equation*}
$$

Ne pas confondre avec l'énergie cinétique des atomes (DM)

Méthode de Kohn-Sham

- Potentiel externe

$$
\begin{align*}
E_{e x t}[n] & =\int V_{e x t}(\mathbf{r}) n(\mathbf{r}) d \mathbf{r} \tag{6}\\
V_{e x t}(\mathbf{r}) & =-\sum_{I} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}\right|}+\sum_{I<J} \frac{Z_{l} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} \tag{7}
\end{align*}
$$

- Potentiel de Hartree

$$
\begin{align*}
E_{H}[n] & =\frac{1}{2} \int V_{H}(\mathbf{r}) n(\mathbf{r}) d \mathbf{r} \tag{8}\\
V_{H}(\mathbf{r}) & =\int \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} \tag{9}
\end{align*}
$$

- Échange-corrélation: approximée par l'intégrale d'une fonction qui ne dépend que de la densité et de son gradient en chaque point de l'espace

$$
\begin{equation*}
E_{x c}[n]=\int \epsilon_{x c}(n(\mathbf{r}) ; \nabla n(\mathbf{r})) n(\mathbf{r}) d \mathbf{r} \tag{10}
\end{equation*}
$$

Pseudopotentiels

Les électrons de cœur ne participent pas aux réactions chimiques \rightarrow remplacés par un potentiel effectif

Implications:

- Reduction du nombre d'électrons \rightarrow accélération des calculs
- Inclusion partielle des effets relativistes dans ces potentiels effectifs

Dynamique de Born-Oppenheimer

- Calcul de l'énergie de l'état fondamental

$$
\begin{equation*}
E^{0}=\min _{\left\{\phi_{i}\right\}} E^{K S}\left[\left\{\phi_{i}\right\}\right] \tag{11}
\end{equation*}
$$

- Calcul de la force agissant sur l'atome I

$$
\begin{equation*}
\mathbf{F}_{I}=\frac{\partial}{\partial \mathbf{R}_{I}} \min _{\left\{\phi_{i}\right\}} E^{K S}\left[\left\{\phi_{i}\right\}\right] \tag{12}
\end{equation*}
$$

- Possible d'utiliser ces forces
\rightarrow Dynamique moléculaire de Born-Oppenheimer

Plan

Théorie de la fonctionnelle de la densité

Méthode de Car-Parrinello

Comparaison BO-CP

Exemples

Conclusion - perspectives

Dynamique de Car-Parrinello

- Etat de l'art au début des années 80 :

Calcul auto-cohérent de l'état fondamental; diagonalisation à chaque étape de l'Hamiltonien de Kohn-Sham
\rightarrow impossible à utiliser au cours d'une DM (trop coûteux)

- Idée de Car et Parrinello: éviter cette étape

1. Calcul de l'état fondamental au début de la dynamique
2. Propagation de la fonction d'onde à l'aide d'une équation du mouvement ensuite

Equations du mouvement

Propagation simultanée des positions et de la fonction d'onde

$$
\begin{aligned}
m_{I} \ddot{\mathbf{R}}_{I} & =-\frac{\partial}{\partial \mathbf{R}_{I}}\left\langle\psi_{0}\right| \mathcal{H}_{e}\left|\psi_{0}\right\rangle \\
\mu \ddot{\phi}_{i} & =-\frac{\partial}{\partial \phi_{i}^{*}}\left\langle\psi_{0}\right| \mathcal{H}_{e}\left|\psi_{0}\right\rangle+\sum_{j} \Lambda_{i j} \phi_{j}
\end{aligned}
$$

\rightarrow Introduction d'une " masse électronique fictive" μ

Intégration: algorithme Verlet-vitesse

$$
\begin{align*}
& \dot{\tilde{\mathbf{R}}}_{l}(t+\delta t)=\dot{\mathbf{R}}_{l}(t)+\frac{\delta t}{2 M_{l}} \mathbf{F}_{l}(t) \tag{13}\\
& \mathbf{R}_{l}(t+\delta t)=\mathbf{R}_{l}(t)+\delta t \tilde{\mathbf{R}}_{l}(t+\delta t) \tag{14}
\end{align*}
$$

$$
\begin{gather*}
\text { calcul de } \quad \mathbf{F}_{l}(t+\delta t) \tag{18}\\
\dot{\mathbf{R}}_{l}(t+\delta t)=\dot{\tilde{\mathbf{R}}}_{l}(t+\delta t)+\frac{\delta t}{2 M_{l}} \mathbf{F}_{l}(t+\delta t) \tag{20}
\end{gather*}
$$

Intégration: algorithme Verlet-vitesse

$$
\begin{align*}
\dot{\tilde{\mathbf{R}}}_{l}(t+\delta t)= & \dot{\mathbf{R}}_{l}(t)+\frac{\delta t}{2 M_{l}} \mathbf{F}_{l}(t) \tag{13}\\
\mathbf{R}_{l}(t+\delta t)= & \mathbf{R}_{l}(t)+\delta t \dot{\tilde{\mathbf{R}}}_{l}(t+\delta t) \tag{14}\\
\dot{\tilde{c}}_{i}(t+\delta t)= & \dot{c}_{i}(t)+\frac{\delta t}{2 \mu} f_{i}(t) \tag{15}\\
c_{i}^{\prime}(t+\delta t)= & c_{i}(t)+\delta t \dot{\tilde{c}}_{i}(t+\delta t) \tag{16}\\
c_{i}(t+\delta t)= & c_{i}^{\prime}(t+\delta t)+\sum_{j} X_{i j} c_{j}(t) \tag{17}\\
\text { calcul de } & \mathbf{F}_{l}(t+\delta t) \tag{18}\\
\text { calcul de } & f_{i}(t+\delta t) \tag{19}\\
\dot{\mathbf{R}}_{l}(t+\delta t)= & \dot{\tilde{\mathbf{R}}}_{l}(t+\delta t)+\frac{\delta t}{2 M_{l}} \mathbf{F}_{l}(t+\delta t) \tag{20}\\
\dot{c}_{i}^{\prime}(t+\delta t)= & \dot{\tilde{c}}_{i}(t+\delta t)+\frac{\delta t}{2 \mu} f_{i}(t+\delta t) \tag{21}\\
\dot{c}_{i}(t+\delta t)= & \dot{c}_{i}^{\prime}(t+\delta t)+\sum_{j} Y_{i j} c_{j}(t+\delta t) \tag{22}
\end{align*}
$$

La masse électronique fictive

- μ est un paramètre non-physique contrôlant le pas de temps de la dynamique "classique" suivie par les électrons
- Il faut prendre une valeur optimale permettant
- une séparation adiabatique entre les déplacements réels des noyaux et les déplacements artificiels des électrons
- un pas de temps d'intégration Δt le plus grand possible
- Valeurs typiques: $\mu \approx 300-1000$ ua, $\Delta t \approx 3-10$ a.u. $=$ $0.07-0.24$ fs

Plan

Théorie de la fonctionnelle de la densité

Méthode de Car-Parrinello

Comparaison BO-CP

Exemples

Conclusion - perspectives

Comparaison BO-CP pour 32 molécules d'eau: paramètres

$$
T=350 \mathrm{~K} ; \rho=0.905 \mathrm{~g} . \mathrm{cm}^{-3}
$$

Simulation	Pas de temps (ua)	Convergence (ua)	μ (ua)
CP	3	-	300
CP	4	-	500
CP	5	-	700
BO	20	10^{-4}	-
BO	20	10^{-5}	-
BO	20	10^{-6}	-
BO	20	10^{-7}	-

40 ua $\approx 1 \mathrm{fs}$

Comparaison BO-CP pour 32 molécules d'eau: énergies

$$
T=350 \mathrm{~K} ; \rho=0.905 \mathrm{~g} . \mathrm{cm}^{-3}
$$

Simulation	Énergie dérive $\left(\mathrm{K.ps}^{-1}\right)$		déviation (K)	Quantité conservée dérive $\left(\mathrm{K.ps}^{-1}\right)$		déviation (K)
CP300	0.276	1.02	0.007	0.004		
CP500	0.736	1.61	0.012	0.006		
CP700	3.070	2.37	0.019	0.008		
BO4	2.980	0.16	2.980	0.159		
BO5	1.584	0.13	1.584	0.129		
BO6	0.092	0.12	0.092	0.119		
BO7	0.033	0.11	0.033	0.113		

Comparaison BO-CP

BO MD

Toujours sur la surface de BO, plus "juste"
$\delta t \approx$ échelle de temps des atomes
Diagonalisation ou minimisation coûteuse à chaque pas de temps

Critère de convergence conservatif pour avoir une dynamique stable

CP MD

Toujours légèrement
au-dessus de la surface de BO
$\delta t<$ échelle de temps des atomes

Orthogonalisation, pas de temps moins coûteux

Stable

Besoin de choisir μ

Plan

Théorie de la fonctionnelle de la densité

Méthode de Car－Parrinello

Exemples

Conclusion－perspectives

《ロト《回〉

Exemple 1: mécanisme de transfert de proton

a

a) $\mathrm{H}_{3} \mathrm{O}^{+}$coordonné par 3 molécules d'eau. Rupture d'une liaison H entre une molécule de la $1^{\text {ere }}$ sphère de solvatation et une de la $2^{\text {de }}$.
b) Une des molécules d'eau de la $1^{\text {ere }}$ sphère est coordonnée 3 fois (au lieu de 4). Migration du proton au milieu de la liaison, avec formation d'un complexe $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$intermédiaire.
c) Transfert complet du proton.
D. Marx, M.E. Tuckerman, J. Hutter \& M. Parrinello, Nature 397 , 601 (1999)

Exemple 2: constante d'auto-ionisation K_{e} de l'eau

Calculée avec diverses coordonnées de réaction:

- Nombre de coordination du proton
- Nombre de coordination de l'oxygène
- Longueur de la liaison OH

Toutes les méthodes donnent $\mathrm{p} K_{e}=13 \pm 1$

M Sprik, Chem. Phys. 258, 139 (2000)

Exemple 3: constante d'acidité K_{a} de I'histidine

Coordonnée de réaction: longueur de la liaison $\rightarrow \mathrm{p} K_{a}=6.8$, très bon accord avec l'expérience (6.1)
I. Ivanov, B. Chen, S. Raugei \& M.L. Klein, J. Phys. Chem. B 110, 6365 (2006)

Plan

Théorie de la fonctionnelle de la densité

Méthode de Car-Parrinello

Comparaison BO-CP

Exemples

Conclusion - perspectives

Codes disponibles

- CPMD
- VASP
- CASTEP
- SIESTA
- CP2K
- QUANTUM-ESPRESSO

Dynamique moléculaire ab initio ?

- Fonctionnelle d'échange-corrélation (LDA, GGA: BLYP, PBE, hybrides)
- Remplacement des électrons de coeur par un pseudopotentiel
- Ondes planes: Énergie de coupure
- Bases localisées: Choix des bases
- Traitement de la dispersion (Grimme...)

Exemple d'input: 64 molécules d'eau

```
&CPMD
    RESTART WAVEFUNCTION DENSITY COORDINATES LATEST
    MOLECULAR DYNAMICS
    NOSE IONS
    298.0 2500.0
    EMASS
    500.0
    TIMESTEP
    4 . 0
    MAXSTEP
    10000
&END
&SYSTEM
        SYMMETRY
            1
        CELL
        23.4588254 1.00000000 1.00000000 0.0.0.
        CUTOFF
            70.0
&END
&DFT
        FUNCTIONAL BLYP
&END
&ATOMS
*O_MT_BLYP KLEINMAN-BYLANDER RAGGIO=1.2
LMAX=P LOC=P
    6
    9.63976028116461769 0.785710576605306521 -0.992012909276357213
...
*H_MT_BLYP KLEINMAN-BYLANDER RAGGIO=1.2
LMAX=S LOC=S
    128
    9.56432348511720321 2.00963055578500027 0.445773725816832944
&END
```


Pour aller plus loin...

D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge 2009) ISBN:978-0-521-89863-8

