Journées USTV/GDR Verres, Baccarat 2014

Early melting reactivity stages, soda-lime glass heterogeneities content

William Woelffel¹

Chopinet M-H.¹, Toplis M. J.², Boller E.³, Gouillart E^{1,} Véron E⁴

¹ Surface du Verre et Interfaces, CNRS/Saint-Gobain, Aubervilliers, France

² IRAP, Observatoire Midi Pyrénées, Toulouse, France

³ ID19, European Synchrotron Radiation Facility, Grenoble, France

⁴ CEMHTI, CNRS, Orléans, France

What's the matter with soda-lime batch melting?

- Heating a glass batch to its liquidus temperature yields poor results
 - Unmolten grains
 - Inhomogeneous glass
 - Numerous **bubbles**
- Contrary to Na₂CO₃, CaCO₃ does not melt nor react fully and completely at low temperature

From carbonates to glass

- From a polyphasic, heterogeneous, granular state to a homogeneous glass:
 - Granular stacking & forces
 - Chemical reactions
 - Deeply entangled

Ultrafast *in situ* tomography on ID19, ESRF, France

From carbonates to glass

- Two [1] pseudo-binary reaction axes
 - 1. NS₂-C as observed by SEM
 - 2. NC-S the mixed carbonate route
- Axis 1: NS_2 -C
 - Quick reaction between silica and sodium carbonate

• Slow, boundary- or diffusion-controlled reactions between calcium oxide-based compounds and a glassy liquid

Axis 2: NC-S

- Formation of liquid and/or solid mixed carbonates at low T
- Quick consumption by reaction with silica [2]

[1] Wilburn, F.W. & Thomasson C.V. *Phys. Chem. Glasses* 2, n°4 (1961)
[2] Cable, M. & D. Martlew. *Glastech. Ber.* 61, n° 2 (1988): 31-35.

From carbonates to glass

- Calcium carbonate reacts to form a series of intermediate compounds
 - CaO, CS, C₂S, NC₂S₂, N₂CS₃, NC₂S₃, NCS₂ in SEM/EDX
 - Observed as shell compounds around Ca-based grains surrounded by a nearly homogeneous glass
 - Detected as crystals in XRD experiments & reported by [1] & [2]

[1] Dolan, M. D. & Misture, S. T. *Glass Tech.* 45, 140–147 (2004).
[2] Tsujimura, T., Tanaka C., & Sakamoto O. *Glass Tech.: Euro. J.of Glass Sc. and Tech. Part A* 53, nº 5 (2012): 202-210.

- Wetting leads to C_2S grains + shell ternary silicates
- Poor wetting leads to calcination

- Unreacted CaCO₃ form CaO, which isn't nice
 - CO₂ emissions **prevent wetting**
 - Lime has **poor wetting** behavior

- Lime dissolution at low temperature is slow
 - Sieved NS₂ (< 250 μm) + CaO (200 -250 μm)
 - Alumina crucibles, static temperature
 - *Ex situ* tomography

Lime is to be avoided

- Slow dissolution making CaO unavailable for SiO₂ network depolymerization
- Glass segregation at lab scale [1]

[1] Chopinet, M.H., E. Gouillart, S. Papin, & M.J. Toplis. *Glass Tech.-Eur. J. of Glass Sc. and Tech. Part A* 51, nº 3 (2010): 116-22.

Munching depth detection

Mixed carbonate formation: observed in the absence of silica

Quick reaction with silica, forming refractory Ca & Na silicates

Conclusion

- Tomography has become a valuable link in the glass melting investigation chain
 - Reveals mechanisms
 - Enhances the understanding of local chemical interactions
 - Fuel for thought
- Tomography & image processing : towards quantitative measurements
 - Already used for SiO₂-Na₂CO₃ system (Gouillart *et al.*, J. Am. Cer. Soc. 2012)

Lime is an unproductive chemical path

- Size threshold effect: XRD
- Chemistry?

Thank you for your attention

