Élaboration de verres bioactifs poreux par métallurgie des poudres et application à la substitution osseuse

L. Gremillard, L. Lefebvre, J. Chevalier

(MATEIS, INSA-Lyon)

D. Bernache-Assolant

Innovative synthetic bone substitutes

(CIS, École des Mines de Saint Etienne)

R. Zenati (Société NORAKER, Villeurbanne)

UNIVERSITE DE LYON

ISTITUT NAT

Journées Verre 2010 de l'USTV, Nancy, 25-26 /11/2010

Bio-active ceramics / Bone substitution

Bone substitutes in revision surgery

- Role:
 - fill bone defects
 - guide bone ingrowth and accelerate reconstruction (osteocondution)
 - provoke bone formation (<u>osteoinduction</u>)
- Materials
 - mostly calcium phosphates
 - Sintered and "macroporous"
 - cements

Bio-active glasses

An alternative to calcium phosphates:

Glasses in the system SiO_2 - CaO - Na₂O - P₂O₅

I_B : index of bioactivity: higher when faster bone bonding

UNIVERSITE DE LYON

Bioactive glasses

Bioactive glasses properties: Formation of a crystallized carbonated hydroxyapatite, identical to the mineral part of bone, at the implant surface in vitro and in vivo

45S5 Bioactive glass (Bioglass ®): Developed in 1969 by L.L. HENCH

<u>Weight composition:</u> 45% SiO₂; 24,5% Na₂O; 24,5% CaO et 6% de P₂O₅.

Interests:

• It is the most bioactive glass obtained by the traditional method. It allows a fast implant/tissue bonding.

It favors stem cells differentiation into osteoblasts. Only known osteoinductive ceramic

• Bactericid effect

Applications: middle ear and dental implants...

Objectives

Porous bioactive glass pieces :

- An alternative to calcium phosphate ceramics for orthopedic applications.
- A choice candidate for tissue engineering.

Synthesis of bioglass[®]

Thermal behavior

Crystallization kinetics

Kinetics between 550℃ and 580℃: XRD kinetics between 622℃ and 678 ℃: isothermal DSC

TTT curves

Temperature-Time-Transformation curves of 45S5 bioglass: (transformation ratio relative to 80% maximum crystallinity)

UNIVERSITE DE LYON

Thermal behaviour

Glass transitions

Environmental Scanning Electron Microscopy with an in situ heating stage

Glass-in-glass phase separation

Acc.V Spot Magn Det WD 25.00 kV 3.0 8087x GSE 16.9 1.9 Torr 570 °C 45scom20micron

Main phase crystallisation Na2CaSi2O6

Acc.V Spot Magn Det WD 25.00 kV 3.0 8087x GSE 16.9 1.9 Torr 703 °C 45ecom20micron

Silicorhenanite crystallisation Na₂Ca₄(PO₄)₂SiO₄

Acc V Spot Magn Det WD ------ 2 µm 25.00 kV 3.0 8087x CSE 16.9 1.9 Terr 8031C 45scom20micron

Sintering behaviour

Dilatometric curve taken at 5°C/min of Bioglass® with its derivative

Formation of a neck between 2 particles

Evolution of the neck diameter between two particles versus temperature (at 5℃/min)

Sintering: influence of the heating rate

100

16

16

• increase of (Ts - Tg1) and (Tc - Tg1) with heating rate

•=> increased shrinkage during the first step with heating rate

Fabrication of porous blocks

PU foam replication

Homogeneous and interconnected structure
Control of the macropore size

•Debinding is necessary => difficult control of the phase transformations

Freeze Casting

Possibility of controlling:

- porosity amount
- freezing direction => pore morphology
- size of macropores
- structural transformations

1 mm

Bioactivity of thermally treated powders

XRD diffractograms of raw and thermally treated (580℃) bioactive glass powders immersed in a Simulated Body Fluid for different times

Bioactivity of thermally treated powders

XRD diffractograms of powders thermally treated at 750℃, 850℃ and 950℃, and immersed in a SBF for different times

• <u>2 weeks</u>: HCA formation faster for powders treated at 950°C

•<u>1 month</u>: Increase of I_{HAC} / $I_{Na2CaSi206}$ ratio with thermal treatment temperature

Bioactivity of thermally treated powders

Formation of needle-like HCA crystals on thermally treated bioactive glass powders after 1 month immersion

Cell culture (osteoblasts) on porous blocks

Protocol: Dissolution of 45S5 Bioglass® => increase of pH => death of osteoblasts © pre-treatment (function of sintering temperature and porosity) **G** Osteoblast culture is possible **Osteoblasts** form a cellular After 13 days of culture: layer on the surfaces of the porous blocks 10 um 10 um cytoplasmic extensions 5 um 2 um

The microporosity of the HA layer helps a fast attachment of the cells.

10 um

Cell culture (osteoblasts) on porous blocks

CONFOCAL MICROSCOPY

Confocal micrograph of cells proliferation and metabolism kinetics on bioactive glass 45S5 porous blocks

Cells

Type I Collagen

- Cell adhesion and proliferation
- Cells synthesize type I Collagen (extra-cellular matrix)

• Cells observed until 660 µm deep

Coll: R. Maksoud, univ Lyon 1

In vivo studies on rabbits

Intramuscular implantation of porous bioglass blocks obtained by the sponge replication technique

- Conclusions after 1 month
 - Biocompatible, some cases of slight superficial inflammation but no infection
 - Good integration of the porous blocks

Summary :

process – structure – properties relations

Perspectives

- New uses of bioglass:
 - As fillers in polymer-based composites
 - As bioactive additives in calcium phosphate or sulfate
 based cements
 - As scaffolds in ceramic-based polymer-ceramic composites
- Extended control of cristallinity:
 - By new shaping methods (without debinding step)
 - By new compositions?

