

Élaboration, structure et caractérisation mécanique de verres et de vitrocéramiques oxyazotés mécanoluminescentes du système BaO-SiO₂-Si₃N₄

Alexis DUVAL 14.11.2024

Journées VERRE 2024 Dijon

–

Prix de thèse USTV 2023

Superviseurs Patrick HOUIZOT & Tanguy ROUXEL

Two joined investigations

Oxynitride glasses

- o Literature review
- o Elaboration
- o Structure
- o Mechanical properties
- \rightarrow Structure/properties relationship

Mechanoluminescence

- o Of crystals and glass-ceramics
- \circ Study of the mechanisms
- o Combined experimental and theoretical study

\rightarrow Study mechanical phenomena through light emission

Introduction

Composition-dependent luminescence and mechanoluminescence (powdered crystals)

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Conclusions and perspectives

Introduction

Luminescence and mechanoluminescence

Material formulation

Introduction

Luminescence Introduction

Luminescence:

o **Light emission** resulting from an **excitation**

Various types of **luminescence** depending on the **excitation source**:

- o **Electroluminescence** (electric field)
- o **Cathodoluminescence** (electronic bombardment)
- o **Photoluminescence** (electromagnetic radiation)

4

Introduction

Luminescence II Mechanism

- o Focus on **photoluminescence** induced by a **luminescent center (Eu2+)**
- **Step 1: UV irradiation**
- o **Eu2+ electronic configuration change**: $4f^7 \rightarrow 4f^6 5d^1$
- o 5d1 **electron escapes** to the **conduction band** (leaving a **hole** behind)
- \circ Then **falls** in the E_1 **energy level (= trap) associated** to **defects** in the **crystal structure**

Step 2: Light emission

- o With **time**, the **electron returns to** the 4f7 **ground state** along **with light emission:**
- o **Deeper energy levels: lifetime** ↗

Introduction

$$
I(t) = I_0 exp \left[-ste^{-\frac{E}{k_B T}} \right]
$$

5

Mechanoluminescence Introduction

Mechanoluminescence:

- o **Emission** of **light** of a **crystalline material** as a **response** to a **mechanical stimuli**
- o **Focus** on **elastico-mechanoluminescence** (elastic deformation)
- à **Changes** the **position** of the **energy levels,** *i.e.* **charge carriers recombination kinetics**

This **PhD** is **in line** with the **PhD** of **M. Dubernet,** realized at the **Glass Mechanics lab** in **2016:**

o It **focused** on a **glass/particles composite** $(SrA₂O₄:Eu²⁺, Dy³⁺)$

[https://www.youtube.com/watch?v=TGTBg8M4JR](https://www.youtube.com/watch?v=TGTBg8M4JRg)g

1Dubernet M, Bruyer E, Gueguen Y, et al. Mechanics and Physics of a Glass/Particles Photonic Sponge. Sci Rep. 2020;10(1):1–10. https://doi.org/10.1038/s41598-020-75504-9

Mechanoluminescent material formulation…

To **study mechanical phenomena** (crack To**studymechanicalphenomena**(crack **Oxynitride glasses:** propagation, etc.) **through** a **light emission**: propagation, etc.) **through**a **lightemission**:

- o Need a **bulk** and **crystalline material** o
- à Start from a **glass** àStart from a **glass**

To achieve **mechanoluminescence** in a **bulk glass-**To achieve **mechanoluminescence**in a **bulkglassceramic**, we looked for:

- o a **mechanoluminescent crystalline phase** oo
- o that **can form** a **glass**
- with a **composition close to** that of the **glass** so as **to favor** a **congruent crystallization** o

Introduction

…to investigate mechanical phenomena

$Ba_4Si_6O_{16}$

However, **Ba₄Si₆O₁₆:Eu²⁺:**

- o (very) **small mechanoluminescence intensity**
- o **Too small** to properly **analyze** the **signal**

While the **(mechano-)luminescence properties** of **several crystals** are **known:**

- o **SrAl2O4:Eu2+, Dy3+**
- o **ZnS:Cu+**
- o **BaSi2O2N2:Eu2+**

Those of $Ba_4Si_6O_{16}$ **: Eu²⁺, RE** (RE = rare earth) were **not** (or scarcely) **reported**

Introduction

à **Study** of the **(mechano-)luminescence properties** with **compositional changes** à **Incidence** of *RE*

Introduction

Composition-dependent luminescence and mechanoluminescence (powdered crystals)

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Conclusions and perspectives

Composition-dependent luminescence and mechanoluminescence (powdered crystals)

Composition dependence

Mechanisms

Composition-dependent (Mechano-)luminescence

Study of the **luminescence** and **mechanoluminescence properties** of **Ba4Si6O16:Eu2+ ,** *RE* powdered **crystals** with **compositional changes:**

- o **Rare-earths co-doping**
- o *RE***:Eu2+ ratio** and **quantity**
- à **Coupling thermally stimulated luminescence** and **mechanoluminescence** experiments

Composition-dependent luminescence and mechanoluminescence powdered (crystals)

Thermally stimulated luminescence

Insights of the **energy levels depths** E and **concentrations** n_0 from **thermally stimulated luminescence:**

$$
I(T) = sn_0 \exp\left(-\frac{E}{k_B T}\right) \left[\left(\frac{(l-1)s}{\beta}\right) \times \int_{T_0}^T \exp\left(-\frac{E}{k_B T}\right) dT + 1 \right]^{\frac{l}{l-1}}
$$

o 1st step: **UV irradiation**

o 2nd step: after a few s, **heating** of the **sample** (1 K· s-1) Presence of ≥ 1 **peak**:

- \circ **T**_{max} \nearrow **: deeper trap (E** \nearrow)
- o **Intensity** λ **:** n_0 λ

11

Composition-dependent luminescence and mechanoluminescence powdered (crystals)

Composition-dependent | Mechanoluminescence

Mechanoluminescence measurement: Diametral compression tests on powder/epoxy composites

Composition-dependent (Mechano-)luminescence

Study of the **luminescence** and **mechanoluminescence properties** of **Ba4Si6O16:Eu2+ ,** *RE* powdered **crystals** with **compositional changes:**

- o **Rare-earths co-doping**
- o *RE***:Eu2+ ratio** and **quantity**
- à **Coupling thermally stimulated luminescence** and **mechanoluminescence** experiments
- à The **(mechano-)luminescence intensity changes** by several **orders** of **magnitude depending** on the *RE* **co-doping**
- à **Rare-earths dependent local structural rearrangements** induce **changes** in **concentrations** and **trap depths** of **energy level**
- \rightarrow Largest luminescence and mechanoluminescence intensity: **Ba_{3.5}Eu_{0.3}Ho_{0.2}Si₆O_{16.1}** (20 % as intense as SrAl₂O₄:Eu²⁺, Dy³⁺)

Composition-dependent luminescence and mechanoluminescence powdered (crystals)

2Duval A, Suffren Y, Benabdesselam M, Houizot P, Rouxel T. Luminescence and Mechanoluminescence of Ba4Si6O16:Eu2+, RE Phosphors. *J Chem Phys***. 2023;159(13):134501. https://doi.org/10.1063/5.0167222**

13

$Composition-dependent$ \parallel Thermally stimulated luminescence

Two important things to **build** the **mechanoluminescence mechanism:**

- **I.** The **luminescence** and the **mechanoluminescence intensity** are **proportional**
- à **Charge carriers involved** with **luminescence** are also **involved** with **mechanoluminescence**

With $RE = Ho^{3+}$ **:**

- o **II.** Gradual **shift** in **T** of the peak with ↗ **delay** time
- à There is **at least ≥ 2 energy levels**
- à The **study** of the **luminescence decay** (up to 16 h) **suggests** a continuous **distribution** of **energy levels**

14

Composition-dependent luminescence and mechanoluminescence powdered (crystals)

Mechanisms | Mechanoluminescence

Large trap distribution from ≥ **0.6** to ≥ **1.0 eV**

It is believed that **mechanical stress** induces a **change** of the **trap depths**

Step 1: **mechanical stress** ↗

- o The **trap depth** ↘
- à **Mechanoluminescence intensity** ↗

Step 2: **mechanical stress** ↘

o The **trap depth returns** to its **initial state** but with ↘ **electrons**

16

Mechanisms \parallel Nature of the point defects

DFT **investigation:**

- o **Calculate formation energy** of various **defects** with different **effective charges**
- \circ **Oxygen vacancy** with **2 trapped electrons:** $q = 0$
- o **Oxygen vacancy** with **0 trapped electrons: = 2+**
- o We **calculate thermodynamic transition levels** $\varepsilon_{(q/q')}$:

$$
\varepsilon_{(q/q')} = \frac{E^f(D^q; E_F = 0) - E^f(D^{q'}; E_F = 0)}{q' - q}
$$

 \rightarrow **Transition** of an **effective charge** *q* to *q'*

17

Composition-dependent luminescence and mechanoluminescence powdered (crystals)

Mechanisms \parallel Nature of the point defects

powdered (crystals)

Introduction

Composition-dependent luminescence and mechanoluminescence (powdered crystals)

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Conclusions and perspectives

19

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Elaboration

Stress-dependent mechanoluminescence

Elaboration of the glass-ceramic **Europium reduction rate**

To **obtain** a **bulk glass-ceramic:**

à **Start** from an **oxynitride glass**

Nitrogen has a **strong incidence** on**:**

o **Mechanical, optical** and **electrical properties**

Purpose of **oxynitride glasses** in this study**:**

- o We **need Eu2+** to **observe mechanoluminescence**
- o But **mostly Eu3+** in **oxide glasses**

Si3N4 is a **reducing agent:**

 $Si₃N₄ + 6 Eu₂O₃ + 3 SiO₂ + 12 EuO + 2 N₂$

 \rightarrow Control Eu²⁺ content through Si₃N₄ addition

3Duval A, Houizot P, Rouxel T. Review: Elaboration, Structure, and Mechanical Properties of Oxynitride Glasses. J Am Ceram Soc. 2022;106(3):1611–1637. https://doi.org/10.1111/jace.18824

Elaboration of the

To **quantify** both **Eu2+** and **Eu3+:**

- à **Mössbauer spectroscopy**
- $Si₃N₄$ **over-stoichiometry** (\sim 2.5 at. $\%$ N) to:
- **Reduce > 95 % of Eu³⁺ into Eu²⁺**
- o **Free** the **melt** of **N2 bubbles:**

 $Si₃N₄ + 6 Eu₂O₃ + 3 SiO₂ + 12 EuO + 2 N₂$

- \rightarrow So as to **obtain homogeneous bulk specimens**
- à And finally **perform diverse mechanical testing** on **these**

glass-ceramic **Europium** reduction rate

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Elaboration of the glass-ceramic

Melt-quench synthesis of the base glass

Synthesis of the **base glass:** 36.7 BaO – 57.6 SiO₂ – 1.7 Si₃N₄ – 3.0 EuO – 1.0 Ho₂O₃ (mol. %)

In a **glove box**:

- **c Controlled atmosphere** (N_2)
- o **High temperature furnace** (1800 °C)
- o **Annealing furnace**
- o **Automated crucible uploader**

[https://www.youtube.com/watch?v=bwIJ2q4Vw0M](https://www.youtube.com/watch?v=bwIJ2q4Vw0M&)& Stress-dependent

Elaboration of the glass-ceramic

Melt-quench synthesis of the base glass

Synthesis of the **base glass:** 36.7 BaO – 57.6 SiO₂ – 1.7 Si₃N₄ – 3.0 EuO – 1.0 Ho₂O₃ (mol. %)

In a **glove box**:

- **c Controlled atmosphere** (N_2)
- o **High temperature furnace** (1800 °C)
- o **Annealing furnace**
- o **Automated crucible uploader**
- à **~ 40 g** per **batch**

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Elaboration of the glass-ceramic

Parent glass crystallization

During oxynitride glasses synthesis:

- o **Si3N4 decomposes partly** into **Si** + **N2**
- **Formation** of **Si** and **FeSi_x particles** (10 nm 10 µm)
- à **Homogeneously distributed**

These **act** as **crystallization points:**

à A **homogeneous** and **volumetric crystallization**

Crystallization of the **glass: 10 minutes** at **1200 °C**

- o **Congruent crystallization (Ba4Si6O16)**
- o **Large crystallization rate** (56 ± 10 %)
- o **cm3 large specimens, easy** to **shape**
- à **Mechanical test** on **bulk specimens**

Stress-dependent mechanoluminescence (bulk glass-ceramic)

4Duval A, Houizot P, Rocquefelte X, Rouxel T. Mechanoluminescence of (Eu, Ho)-Doped Oxynitride Glass-Ceramics from the BaO-SiO2-Si3N4 Chemical System. *Appl Phys Lett***. 2023;123(1):011905. https://doi.org/10.1063/5.0149749**

(bulk glass-ceramic)

Stress-dependent mechanoluminescence | Isostatic pressure

Isostatic pressure test: hydrostatic stress

Gas introduced in a **gas tank**

- o **Control** of **stress**
- o **Control** of **stress rate** ̇

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Mechanoluminescence intensity: ~ 1000 a. u.

Stress-dependent mechanoluminescence Uniaxial compression

Uniaxial compression test: hydrostatic stress + shear stress

P o With **similar** and ̇ as **isostatic pressure** tests: **mechanoluminescence intensity** ↘ **(100 times !)**

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Mechanoluminescence intensity: ~ 10 a. u.

Stress-dependent nechanoluminescence Torsion

Torsion test: shear stress

- **0** Up to τ = 40 MPa and $\dot{\tau}$ = 40 MPa \cdot s⁻¹
- à **No mechanoluminescence (observed** with $\sigma = 50$ MPa and $\dot{\sigma} = 5$ MPa \cdot s⁻¹)

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Mechanoluminescence intensity: 0 a. u.

Stress-dependent mechanoluminescence

29

Summary:

- o **Identical mechanoluminescence behavior whatever** the **mechanical test**
- o But **change** in **mechanoluminescence intensity**

Stress-dependent mechanoluminescence Theoretical investigation

We considered the **5 identified energy levels** (oxygen vacancies) and **applied various stresses to Ba₄Si₆O₁₆:**

o **Hydrostatic stresses|The trap depth** of every **energy levels** ↘ **with** ↗ **mechanical stress**

(bulk glass-ceramic)

o **Shear stresses | Multiple trends: trap depth either** ↗**,** ↘**, or remains unchanged.** ↘ **changes** in **compared** to **hydrostatic stress (with similar stresses)**

 \rightarrow Agreement with the experiment

Stress-dependent mechanoluminescence Theoretical investigation

Ba4Si6O16 is a **2D structure:**

- o **Silicate chains** in **between BaO8 sheets**
- o **Point defects associated** with **luminescence: oxygen vacancies**
- **(a, b) plane along b: gliding** of **silicate chains**
- à **Slight changes** of the **oxygen environment**
- \rightarrow **Small changes** in **trap depth**

31

Stress-dependent mechanoluminescence (bulk glass-ceramic)

Stress-dependent mechanoluminescence Theoretical investigation

Plot of **Si-Si distance against** the **trap depth:**

- o **Mechanoluminescence** results from **changes** in the **trap depth** upon **mechanical loading**
- o These **changes** stem from the **structural reorganization** of **point defects** as a **response** to the said **stress**
- o **Si-Si distance** ↘**: energy level depth** ↘
- o **Oxygen vacancies** are **more sensitive** to **hydrostatic stress** than **shear stress (even** for **similar Si-Si distances)**
- à **Mechanoluminescence intensity** ↗ when **hydrostatic stress** ↗

Stress-dependent mechanoluminescence (bulk glass-ceramic)

33

Conclusions

Study of the **composition-dependent luminescence** and **mechanoluminescence** of **Ba₄Si₆O₁₆:Eu²⁺, RE**:

- \circ **Role** of **E** and n_0
- o **Role** of **oxygen vacancies** in the **luminescence mechanism**

Elaboration of **bulk mechanoluminescent glass-ceramics**:

- o **Control** of the **europium reduction rate**
- o **Control** of the **crystallization rate**

Study of the **stress-dependent** mechanoluminescence of $Ba_4Si_6O_{16}:Eu^{2+}$, Ho³⁺:

- o **Experimental** and **theoretical study**
- o **Separate role** of **hydrostatic stress** and **shear stress**

Proposition of a **mechanoluminescence mechanism**:

o **Changes** in **trap depth** stem solely from the **structural reorganization** of the **point defects** as a **response** to the **mechanical stress**

 $\frac{1}{34}$ Conclusions and $\frac{1}{34}$ perspectives

Conclusions Perspectives

Applications:

- o **Stress sensing**
- o **Energy storage**
- o **Light sources responsive** to **mechanical stress**

Study of **mechanical phenomenon** through **light emission (crack propagation):**

- o **No fracto-mechanoluminescence** was **observed**
- o The **crack front avoids** the **crystals** in the **path**
- à **Crystallization rate** ↗
- \rightarrow **Change** to another **mechanoluminescent crystal (start** the **study over again)**

 $\uparrow \uparrow \uparrow \uparrow$

Conclusions and
perspectives perspectives

