SelSian

Electric Melters: Principle, design, and limitations

ICG Spring School – Glass for a sustainable future

A.J. Santosh, 30th April 2024

We are CelSian

- Engineering consultancy based in the Netherlands and the USA
- Fast, experienced and highly educated
- Dedicated to glass and supporting the glass industry

Four main services:

Why?

Carbon footprint breakdown

https://www.agc-glass.eu/en/sustainability/environmental-footprint/carbon-footprint

Transition to Electric furnaces

Hybrid Furnaces

60% energy supplied via boosting

Full electric (Cold Top)

100% energy supplied via boosting

Energy efficiency of Fuel-fired against Electrical Heating

- Fossil fuel fired furnaces efficiency ≈ 45%
- Electric Furnace up to 85% of efficiency

State-of-the-art electric melters operate at 2.88GJ/ton of molten glass.

https://www.osti.gov/servlets/purl/927883

7

Principle of Electric Melters

Electrodes and modeling of the Joule effect

• Electric melters, make use of electric heating elements

Boost Heat [kW/m³] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

 Temperature [°C]

 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420

Observation of the Joule Effect

Survey mode with transportable NIR-B via an existing peephole.

Cold-top furnace

Batch charging from top Insulating cold top No hot flue gas

Vertical melter

Heat transfer in full electric furnaces - Convection

Thermal profile driven by current density, local heat release

HTMOS - Cold Top configuration

```
Confidential set-up
```

Study the interaction hot melt & cold top \rightarrow radiative transfer

Specific pullrate = industrial scale

Features:

- Video recording "Side view": Glass-batch interface
- Video recording "Top view": Batch Surface
- IR measurement: Batch surface temperature f(time)

Batch surface temperatures

Batch surface temperatures flint batch

Batch surface temperatures amber batch

Batch model

Batch model

Figure 4-1. Schematic overview of the melting process of a batch blanket in a glass furnace, batch charging velocity vg (m/s)

Batch blanket model – 3 experimental inputs

- Melting onset temperature
 - HTMOS (High Temperature Melting Observation Setup) trials
- Batch to melt conversion rate
 - Interrupted melting rate trials
- Melting energy of raw materials
 - Chemical energy demand trials

Batch blanket model

- Modeled as a batch mass fraction
- Uses a transient convection-diffusion equation

Batch blanket model

- Calculates the position of the batch blanket
- Calculates the shape of the batch blanket
- Calculates the thickness of the batch blanket
- Calculates the dissolution of raw materials in the glass melt

Batch blanket model

• CelSian's dedicated batch model can simulate changes in the batch blanket thickness with changes in process conditions.

Full-electric melting advantages

- Lack of a combustion space:
 - Minimal CO₂ emissions from melter
 - Almost no \overline{NO}_x emissions
 - Reduced evaporation of (volatile) raw materials
- Best available technology on Energy efficiency
- Reduced Capex : no regenerators, no burner skids and no expensive crown refractories
- From an innovation point of view a shorter lifetime is not a disadvantage

2484 glass furnaces worldwide

• Despite advantages, full-electric melters only account for 10% of all furnaces in operation

Full-electric melting challenges

- Limited in capacity
- Dark colors
- High cullet
- Less flexible in operating temperatures and pull
- Low pull
- Relative short lifetime
- Selection of refractory material

CO₂ emission electricity (indirect)

Emission factor depends on

- Mix fossil & renewable ۲
- Technology ullet

Coal power plant:

 \approx 700 g/kWh_e (=0.200 kg CO₂/MJ) Combined cycle power plant:

 \approx 360 g/kWh_e (=0.100 kg CO₂/MJ)

Conclusions

- Working principle of electric melters
- Current density
- Joule heating
- Heat transfer via convection
- Radiative heat transfer
- Advantages and current limitations
- Use of CelSian's dedicated Batch blanket model

HOW MUCH ENERGY DOES IT TAKE TO TOAST A SLICE OF BREAD?

Robert and glass

0,021 kWh = 21 Wh = 75,5 kJ

How much energy do you need to melt 1 ton (1000 kg) of your glass?

 $3 \text{ GJ} = 833 \text{ kWh} \approx 38 \text{ Roberts}$

 $4 \text{ GJ} = 1111 \text{ kWh} \approx 52 \text{ k Roberts}$

ROBERT GENERATED 0,021 kWh

SelSian

Thank you for your attention