

Département de Chimie du Solide et de la Matière Divisée ChV

Etude par microscopie en champ proche des propriétés mécaniques des verres chalcogénures présentant une séparation de phase

Andrea A. Piarristeguy, Raphael Escalier, Annie Pradel

Institut Charles Gerhardt Montpellier (UMR 5253 CNRS) Thématique Chalcogénures et Verres

Rozenn Le Parc

Michel Ramonda

Université de Montpellier, L2C, UMR 5221, CNRS, Montpellier, France. Centre de Technologie de Montpellier, Université de Montpellier, 34095 Montpellier Cedex 5, France

Système Ag-Ge-Se

✓ Haute conductivité ionique par ions Ag⁺

✓ Photo-diffusion de l'argent dans les verres Ge-Se.

Développement d'un nouveau type de mémoires électriques: Conductive-Bridging Random Access Memories (CB-RAM).

N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Superlattices and Microstructures 34 (2003) 459.

Système Ag-Ge-Se

✓ Haute conductivité ionique par ions Ag⁺

✓ Photo-diffusion de l'argent dans les verres Ge-Se.

Développement d'un nouveau type de mémoires électriques: **Conductive-Bridging Random Access Memories (CB-RAM)**.

Solid electrolyte is formed in a via between two levels of

Verre Ag-Ge-Se

Dépôts d'Ag

« Cellules de Métallisation Programmable (PMC) » ou « Conductive Bridge-RAM (CB-RAM) »

Fonctionnement: Matériau hétérogène

Caractérisation structurale et électrique du matériau actif $Ag_x(Ge_{0,25}Se_{0,75})_{100-x}$ sous forme de verre massif.

- Compositions proches de la composition du matériau actif de la mémoire CB-RAM -

M. A. Ureña, A. A. Piarristeguy, M. Fontana, B. Arcondo, Solid State Ionics 176 (2005) 505-512.

M. A. Ureña, A. A. Piarristeguy, M. Fontana, B. Arcondo, Solid State Ionics 176 (2005) 505-512. V. Balan, A.A. Piarristeguy, M. Ramonda, A. Pradel, M. Ribes, J. Optoelect. And Adv. Material Vol.8 ISS.6 (2006) 2112-2116.

Système Ag-Ge-Se

✓ Haute conductivité ionique par ions Ag⁺

✓ Photo-diffusion de l'argent dans les verres Ge-Se.

Développement d'un nouveau type de mémoires électriques: **Conductive-Bridging Random Access Memories (CB-RAM)**.

Verres hétérogènes Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

 Caractérisation vibrationnelle locale par spectroscopie Raman (cartographie)

 Caractérisation mécanique à l'échelle nanométrique par PF-QNM
 (Peak Force Quantitative Nano-Mechanical)

Spectroscopie Raman

R. Le Parc, A. A. Piarristeguy, N. Frolet, A. Pradel, M. Ribes; J. Raman Spectrosc. 44 (2013) 1049-1057.

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

Ag₁₀(Ge_{0,25}Se_{0,75})₉₀

0.2436

Zones claires Zones sombres (Phase riche en Ag) (Phase pauvre en Ag)

12 μm x 12 μm λ =785 nm Puissance laser = 60 μW v_a: GeSe_{4/2} – CS - déplacements

 v_{c-d} : Se-Se chaines - *largeur*

v_{c-d}: Se-Se chaines - déplacements

A.A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, I. Grillo, G. J. Cuello, V. Cristiglio, A. Pradel; « Local vibrational and mechanical characterization of Ag conducting chalcogenide glasses », Journal of Alloys and Compounds 762 (2018) 906-914.

Ag₁₀(Ge_{0,25}Se_{0,75})₉₀

v_a: GeSe_{4/2} – CS - déplacements

 v_{c-d} : Se-Se chaines - *largeur*

12 μ m x 12 μ m λ =785 nm Temps d'acquisition = 0,5 s Puissance laser = 60 μ W

25

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

Ag₁₀(Ge_{0,25}Se_{0,75})₉₀

Zones claires Zones sombres (Phase riche en Ag) (Phase pauvre en Ag) v_a: GeSe_{4/2} – CS - déplacements

v_{c-d}: Se-Se chaines - déplacements

 Bon accord entre les trois paramètres (déplacements et largeur).

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

1^{ere} Hypothèse

 Les phases riche et pauvre en argent ont une composition Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

Dépendances linéaires des paramètres avec la teneur en Ag.

Composition des phases séparées

MAIS

résultats incohérents

Ex: phase pauvre en Ag ~ 15-16 at. % Ag pour le verre $Ag_{10}(Ge_{0,25}Se_{0,75})_{90.}$

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

1^{ere} Hypothèse

A.A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, I. Grillo, G. J. Cuello, V. Cristiglio, A. Pradel; « Local vibrational and mechanical characterization of Ag conducting chalcogenide glasses », Journal of Alloys and Compounds 762 (2018) 906-914.

2^{eme} Hypothèse

La proportion relative de Se et Ge évolue entre les phases pauvre en Ag et riche en Ag ($Ge_vSe_{1-v} \neq Ge_{0.25}Se_{0.75}$)

Raman: la diminution de la teneur en Se ainsi que de l'augmentation de la teneur en Aq donnent lieu à des modifications Raman très similaires.

Ge₃₃Se₆₇

Ge, Se,

(a)

400

14

350

Se

300

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

1^{ere} Hypothèse

 Les phases riche et pauvre en argent ont une composition Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

Dépendances linéaires des paramètres avec la teneur en Ag.

Composition des phases séparées

MAIS

résultats incohérents

Ex: phase pauvre en Ag ~ 15-16 at. % Ag Pour le verre Ag₁₀(Ge_{0,25}Se_{0,75})₉₀ 2^{eme} Hypothèse

 La proportion relative de Se et Ge évolue entre les phases pauvre en Ag et riche en Ag (Ge_ySe_{1-y} ≠ Ge_{0,25}Se_{0,75})

Raman: la diminution de la teneur en Se ainsi que de l'augmentation de la teneur en Ag donnent lieu à des modifications Raman très similaires.

Phase pauvre en Ag: Zone riche en Se (y < 0,25)</p>
Phase riche en Ag: Zone pauvre en Se (y > 0,25)

PF-QNM (Peak Force Quantitative Nano-Mechanical)

PF-QNM

Microscope AFM MultiMode 8 de Bruker Instruments piloté par électronique Nanoscope 5, mode Peak Force QNM Peak Force (nN) 50 DMT fit for 30 modulus 20 Trace Deformation Retrace 10 0 20 30 10 Adhesion -10 -20 Dissipation -30 Tip-sample Separation (nm)

Le module d'indentation est calculé en extrapolant la courbe de rétraction au voisinage du point de contact, en utilisant le modèle Derjaguin–Mueller–Toporov (DMT)

$$E^{*} = \left[\frac{1 - v_{s}^{2}}{E_{s}} + \frac{1 - v_{tip}^{2}}{E_{tip}}\right]^{-1}$$

 E_s , E_{tip} = Modulus de Young v_s , v_{tip} = Coefficient de Poisson

CHEMISTRY: MOLECULES TO MATERIALS

- Pointe utilisée : RTESPA-525-30 de Bruker Inst.
- Levier et pointe calibrés (R=34nm, K=167N/m),
- Peak force setpoint = 200 nN

25.0

22.5

20.0 Indentation modulus 17.5 15.0 modulus 12.5 10.0 s

(GPa) - 7.5

5.0

PF-QNM

propriétés mécaniques au niveau local.

A.A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, A. Pradel, « Topological study of phase-separated Ag-conducting chalcogenide glasses using Peak Force Quantitative Nano Mechanical characterization », Frontiers in Materials 6 (2020) 340.

18

PF-QNM

Trois valeurs différentes du module d'indentation

✓ Valeur moyenne du module d'indentation

estimée à partir des données enregistrées sur l'ensemble de l'image 5 × 1,5 µm est équivalente à une « mesure macroscopique » car les deux phases sont moyennées.

- Module d'indentation pour la phase riche en Ag
- Module d'indentation pour la phase pauvre en Ag

PF-QNM

Dépolymérisation à haute teneur en argent

PF-QNM

Dépolymérisation à haute teneur en argent

PF-QNM

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

A. Zeidler, P. S. Salmon, D. A. J. Whittaker, A.A. Piarristeguy, A. Pradel, H. E. Fischer, C. J. Benmore, O. Gulbiten; Royal Society Open Science 5 (2018) 171401.

Verres Ag_x(Ge_{0.25}Se_{0.75})_{100-x}

Nombres de coordination moyens des phases riche (R) $< N_R >$ et pauvre (P) $< N_R >$ en Ag.

 $\Delta M_{R-P} = M(R) - M(P)$ $\Delta M_{R-P} = 14,04 \Delta < N > - 3,94 \Delta < N > = 10,06 \Delta < N >$ $\Delta M_{Ge} \qquad \Delta M_{Ag}$

ii) Calcul du pourcentage de surface pour les phases riches et pauvre en argent à partir des images PF-QNM.

$$< N > = (\% P) < N_P > + (\% R) < N_R >$$

 $< N_P > + \Delta < N >$

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

Nombres de coordination moyens des phases riche (R) $< N_R >$ et pauvre (P) $< N_R >$ en Ag.

A.A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, A. Pradel, Frontiers in Materials 6 (2020) 340.

Compositions des phases riche (R) et pauvre (P) en Ag.

Verres Ag_x(Ge_{0.25}Se_{0.75})_{100-x}

- i) Calcul du pourcentage de surface pour les phases riche et pauvre en argent à partir des images PF-QNM.
- $Ag_{x}(Ge_{0,25}Se_{0,75})_{100-x} = (\%R)Ag_{x'}(Ge_{y'}Se_{1-y'})_{100-x'} + (\%P)Ag_{x''}(Ge_{y''}Se_{1-y''})_{100-x''}$ $\implies x = (\%R)x' + (\%P)x''$

0,25(100 - x) = (% R)y'(100 - x') + (% P)y''(100 - x'')

ii) Phase riche en Ag: Zone riche en Ge (y' > 0,25)

iii) Effet découplé des variations de Ag et de Ge sur les propriétés mécaniques

$$\Delta M_{R-P} = M(R) - M(P)$$

$$\Delta M_{R-P} = -0.12 \,\Delta_{x'x''} + 0.12 \,\Delta_{y'y''}$$

iv) Teneur en argent: Phase riche en Ag: x' > x Phase pauvre en Ag: x'' < x

Compositions des phases riche (R) et pauvre (P) en Ag.

Verres Ag_x(Ge_{0.25}Se_{0,75})_{100-x}

Ag (at.%)

Compositions des phases riche (R) et pauvre (P) en Ag.

Verres Ag_x(Ge_{0,25}Se_{0,75})_{100-x}

- La concentration en Ge diffère entre les phases riche et pauvre en argent, la concentration en Ge étant plus grande dans la phase riche en argent.
- Lorsque la teneur moyenne en argent augmente dans les verres, la concentration en Ge diminue dans les deux phases.
- Les concentrations en germanium dans les deux phases sont comprises entre 19 et 31 % at. Ge.

A.A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, A. Pradel, Frontiers in Materials 6 (2020) 340.

Conclusion

Les informations complémentaires apportées par les expériences de **cartographie Raman** et de **PF-QNM** conduisent à suggérer que la proportion relative de sélénium et de germanium évolue entre les deux phases (phases riche et pauvre en argent), c'est-à-dire, *une phase pauvre en Ag riche en sélénium et une phase riche en Ag pauvre en sélénium*.

- Un **modèle** basé sur l'hypothèse que le changement des **propriétés nanomécaniques** des **phases riche et pauvre en Ag** dépend du changement de Ag et Ge de manière indépendante est proposé.
- ✓ Lorsque la teneur en argent dans le verre augmente, les nombres moyens de coordination <N_R> et <N_P> diminuent continuellement. Ceci est accompagné d'une *diminution de la concentration en Ge* dans les deux phases mais avec une concentration moyenne en Ge restant égale à 25.