

EXEMPLES DU RÔLE DE DIFFUSION CHIMIQUE DANS LES COUCHES MINCES À LA SURFACE DU VERRE PLAT

E.BUROV

ECOLE SUFRACES ET INTREFACES DU VERRE, OLÉRON 2023

LES RÉSULTATS DE 3 THÈSES

H. Montigaud

E. Gouillart

SAINT-GOBAIN

3 / Saint-Gobain confidential & proprietary

CONTEXTE INDUSTRIEL: FONCTIONNALISATION DE LA SURFACE

CONTEXTE INDUSTRIEL: EXEMPLE

□ Mise en forme

Bombage pare-brise

Optimisation des propriétés mécaniques

Trempe thermique

Activation des propriétés des couches minces

6 / Saint-Gobain confidential & proprietary

Empilement de couches minces à base d'argent déposées sur verre

Dieleerique

Ag ZnO

Dielectrique

Verre

550°C - 700°C 2-10min

□ Activation des propriétés des couches minces

□ Activation des propriétés des couches minces

→ Improved photocatalytic activity

□ Activation des propriétés des couches minces

× Alkali diffusion **→ ×** Alteration of the thin films properties

POST-TRAITEMENTS THERMIQUES: DIFFUSION

ECOLE THEMATIQUE DU CNRS

« Verres et diffusion » Diffusion chimique dans les phases vitreuses et liquides

03 au 08 octobre 2021 - La Villa Clythia Fréjus

https://www.ustverre.fr/site/index.php?option=com_content&view=article&id=402&Itemid=966&Iang=fr

Ecole sur la diffusion dans les solides

20 au 34 avril 2020, Marseille 26 au 30 avril 2021, Marseille

Institut Matériaux Microélectronique Nanosciences de Provence

Couple SiQ., B.O. Couple Na.O-8.O

Alteration

laver

4 6 Depth (µm)

C/Si+

Normalized

Pristine

glass

COMMENT CARACTÉRISER LA DIFFUSION DANS LES COUCHES MINCES? SGR Paris: Thierry Cretin, Hervé Montigaud Time-of-Flight Secondary Ion Mass spectroscopy (ToF-SIMS) Analyseur à temps de vol (Tof) Principe Profils des ions secondaires Analyse simultanée de tous les plr: 550°C @ 0 min éléments (ions secondaires) Source de décapage 106 Source d'analyse Sensibilité ~ gg ppm (Bi+) (Cs^+, O_2^+) Ions secondaires, neutres, 10 clusters $(M^0, M+, CsM+) + e^{-1}$ Intensité (coups) 104 Effets de matrice 10

10

200

P Calibration vitesse de décapage

800

600 temps décapage

G2 **Détermination** des facteurs de sensibilités = mesures quantitatives

1000

1200

Ba+

COMMENT CARACTÉRISER LA DIFFUSION DANS LES COUCHES MINCES?

Vers les mesures quantitatives

SGR Paris: Thierry Cretin, Hervé Montigaud

Profils des ions secondaires

Pic de l'étain = témoin de la surface du verre

Calibration vitesse de décapage

14 / Saint-Gobain confidential & proprietary

COMMENT CARACTÉRISER LA DIFFUSION DANS LES COUCHES MINCES?

SGR Paris: Thierry Cretin, Hervé Montigaud

- Vers les mesures quantitatives
- ✤ Détermination des facteurs de sensibilités = mesures quantitatives
 - Utilisation du substrat comme étalon
 - Validation par XPS et EPMA et l'analyse de la composition du verre

PhD: J.-T. Fonné

Figure 24 : Profils SIMS de Na₂O pour des couches de silice de 150 nm d'épaisseur dopées Al_2O_3 (4% masse), en fonction du temps de recuit et de la température : A - recuit 550°C, B - recuit 600°C, C - recuit 650°C.

- Concentration de Na augmente avec T pour le même temps
 Na augment avec la temps integui en plateau
- ✓ Na augment avec le temps jusqu' au plateau

PhD: J.-T. Fonné

Diffusion Na et K 🛪 lorsque Al 🛪 ??

PhD: S. Ben Khemis

SAIN

Equilibrium of alkali concentration: 650°C_60 min

Glass + 150 nm SiO₂:Al₂O₃ (0.2=>28 %wt), 2 µbar

Depth profile of Na

→ Aluminum doping of the film enhances the alkali diffusion

SAIN

DIFFUSION: SUBSTRAT VERRE /COUCHE AMORPHE_{PhD: S. Ben Khemis}

 RMN a mis en évidence que 89 % des atomes d'Al se trouvent en coordinence 4.

Effet de recuit à 650 °C	H _{Surface} (10 ¹⁵ at/cm²)	H _{Couche} silice (% atomique)
Non recuit	16 ± 1	1.7 ± 0.1
Recuit 5 min	13 ± 1	1 ± 0.08
Recuit 15 min	15 ± 1	0.2 ± 0.02

ERDA (Elastic Recoil Detection Analysis)

✓ Na⁺ est compensateur de charge

PhD: J.-T. Fonné

PhD: S. Ben Khemis

 Na⁺ est compensateur et modificateur de charge

Retour à la thermodynamique … mais avec de l'eau :

Pour 6000 ppm d'eau dans la silice

PhD: J.-T. Fonné

Retour à la thermodynamique … mais avec de l'eau :

Pour 6000 ppm d'eau dans la silice

PhD: J.-T. Fonné

IMPACT DE LA PRESSION DU DÉPÔT

PhD: S. Ben Khemis

 Une diminution de la densité macroscopique de la couche est liée à l'augmentation de porosité interconnectée

Modification des propriétés de la couche avec la diffusion de Na+ :

SiO₂ dopée 2,4 % (mol) Al₂O₃ 1200 Na⁺ modificateurs de réseau 1100 1000 (°c) 900 ല 800 700 Na⁺ compensateurs de charges 600 0.5 1.5 2.5 3.5 4.5 0 1 2 3 4 Na₂O (% mol)

Evolution de la Tg de SiO₂ dopée 2,4% AI_2O_3 au fur et à mesure de la diffusion du sodium

Evolution de la viscosité de SiO₂ pour un ratio

► Tg de la couche diminue => mobilité des ions augmente

Décalage de l'interface silice/verre au cours du temps : couches silice – épaisseur 150nm – recuit 650°C

Silice dopées 4% Al₂O₃ (wt %)

Silice pure

$$D = D_a \exp\left[\beta \left\{C - \frac{1}{2} \left(C_1 + C_2\right)\right\}\right] \qquad \beta = \frac{1}{C_1 - C_2} \ln\left(\frac{\eta_2}{\eta_1}\right)$$
$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D(C)\frac{\partial C}{\partial x}\right)$$

SAIN

LO reflète la présence de lacunes d'oxygène E₂^{high} montre la présence d'un désordre local important

Liu et al., Ferroelectrics, 1999

PhD: S. Ben Khemis

Annealing effect (≤ 10 min):

- Intensity inversion of intensity E_2^{high} and $A_1(LO)$ peaks
- Increase in ratio intensity $E_2^{high}/A_1(LO)$
- → Crystallinity improvement of AZO film

Annealing effect (> 25 min):

- Reduction of the E2high / A1 (LO) ratio
- →Degradation of crystalline quality of AZO

DIFFUSION: SUBSTRAT VERRE /COUCHE OXYDE PhD: S. Ben Khemis

PhD: S. Ben Khemis

AZO

PLC

SAINT-GOBAIN

Recuit sous vide (300-600°C, 1h)

Evolution des microstructures

SAINT-GOBAIN

Recuit sous vide (300-600°C, 1h)

Profils 1D de diffusion du nickel

T > 400°C : diffusion du nickel dans ZnO

• 450°C < T < 500°C : saut significatif

T = 600°C : épaulement à l'interface

DIFFUSION: COUCHE OXYDE/COUCHE MÉTALLIQUE [Jacques Perrin Toinin]

Recuit sous vide (300-600°C, 1h)

Localisation du Ni par sonde atomique tomographique (APT)

(c) Reconstruction 3D

0 0 [Ni] (%at.) (%at.)

(d) Projection 2D des concentrations

RNTHAACHEN UNIVERSITY

1%

(a) Pointe APT usinée par FIB

Cas du recuit à 400°C

-Recuit sous vide (300-600°C, 1h)

Localisation du Ni

(A) Bosse @550°C proche de la surface

Profils ToF-SIMS du nickel

 Régions enrichies en nickel (2.10⁻¹ <[Ni] %_{at.}< 4)

[Jacques Perrin Toinin]

RWITHAACHEN UNIVERSITY

Localisation du Ni

Recuit sous vide (300-600°C, 1h)

(B) Plateau @600°C

APT dans le volume

(C) Epaulement à l'interface @600°C

- 55

Evolution de l'empilement en température

SAINT-G

Rappel : diffusion dans un polycristal

Lois d'Arrhenius types

[D. Gupta, (1988)]

Dsurface > Djg >> Dg

Court-circuit de diffusion

Régimes cinétiques d'Harrison

(Dt)^{1/2} >> d

555

- T > 450°C : Pas d'impact des conditions de dépôt dans G
- Recuit sous air limite la diffusion dans G

- A matrice fixée (ZnO) : diffusion dans JG dépend de la forme du Ni
- A source fixée (NiO) :
 - diffusion plus lente dans JG pour ZnO + O₂
 - Diffusion sous vide équivalente à sous air

POST-TRAITEMENTS THERMIQUES: DIFFUSION

49 / Saint-Gobain confidential & proprietary

MERCI POUR VOTRE ATTENTION

MERCI POUR VOTRE ATTENTION

Introduction

Conclusions et Perspectives

Couches bloqueurs : intérêt

Oxydation de la couche d'Ag :

Avec le dépôt de ZnO

[R. J. Martin-Palma and al., J. of V. S. & Tech. (1999)]

Avec les recuits

[M. T. Rahman, J.P. Chemistry, (2017)] [S. Petrovic, Science of Sintering (2006)]

Saint-Gobain confidential & proprietary 52 /

[M. Philipp, Thèse de doctorat (2011)]

Introduction

Diffusion

Conclusions et Perspectives

Couches bloqueurs : intérêt

Oxydation de la couche d'Ag :

[R. J. Martin-Palma and al., J. of V. S. & Tech. (1999)]

[M. T. Rahman, J.P. Chemistry, (2017)] [S. Petrovic, Science of Sintering (2006)]

Métaux de transition avides d'oxygène (effet « getter »)

Ti, NiCr

SAINT-GOBAIN

Couche sacrificielle pour éviter l'oxydation de l'Ag

CIII

(2017)]

[E. Chernysheva, Thèse de doctora

 $\frac{\text{Métal}}{\Delta H_f^0} = 0 \text{ à } -50 -200 \text{ à } -250 -350 \text{ à } -400 -500 \text{ à } -550}$ (kJ par mole d'O)
(kJ par mole d'O)
(kJ par mole d'O)

[C. T. Campbell, S. science (1997)]

53 / Saint-Gobain confidential & proprietary

roduction

NiCr/ZnO

sion

SAIN

SAINT-GOBAIN

Recuit sous air (650°C, 8 min)

Evolution de la répartition des espèces

Le Ni diffuse dans tout le ZnO Le Cr diffuse peu (localisé à l'interface)

Avant recuit STEM-EDX (en coupe) Zn 0 Ni Cr 10 nm Après recuit Zn Ni 0 Cr 10 nm CNrs Formation de précipités riches en Ni À l'interface NiCr /ZnO

A retenir ...

Empliement NiCr/ZnO

SAIN

SAINT-GOBAIN

Evolution de l'empilement en température

Pas (peu) de diffusion du Cr

Introduction

Paramètres de dép Diffusion

Conclusions et Perspectives

SAINT-GOBAIN

¹_j¹ <u>Ajout d'oxygène au cours du dépôt</u>

Paramètres de dép Diffusion

Conclusions et Perspectives

Scans XPS haute résolution

$i_{j}i_{j} = Au niveau de la couche de NiCr$

Paramètres de dé Diffusion

Conclusions et Perspectives

¹¹¹ Empilements : microstructures du ZnO ?

	NiCr/ZnO	NiCrOx/ZnO	NiCr/ZnO+O2
Texturation (%)	95	87	100
Diamètre (nm)	32	26	26
Epsilon	9.10 ⁻³	7.10-3	9.10 ⁻³

58 / Saint-Gobain confidential & proprietary

Introduction

Paramètres de dép Diffusion

[‡]j[‡]‡ <u>Empilements</u> : état d'oxydation de NiCr à l'interface ?

XPS haute résolution à l'interface

Diagramme de Wagner : espèces majoritaires du Ni

ZnO → faibles modifications, formation d'hydroxy

ZnO + O₂ \rightarrow modifications importantes, formation

59 / Saint-Gobain confidential & proprietary

[M. Biesinger, Phys. Chem. Chem. Phys., 28 AINT-GOBAIN

ntroduction

Diffusion

Conclusions et Perspectives

Recuit sous vide : effet de l'oxygène intrinsèque

Introduction

Diffusion

Conclusions et Perspectives

<u>Décorrélation : état d'oxydation du Ni et nature du ZnO</u>

ntroduction

Diffusion

Conclusions et Perspectives

Recuit sous air : effet de l'oxygène extrinsèque

Hypothèse : homogénéisation par l'apport extérieur d'oxygène

62 / Saint-Gobain confidential & proprietary

- A source fixée (NiO) :
 - diffusion plus lente dans JG pour ZnO + O₂

CNIS

SAIN

SAINT-GOBAIN

Diffusion sous vide équivalente à sous air

dans G

Introduction

Effets de l'apport d'oxygène sur la diffusion du Ni

A retenir ...

Au cours du dépôt de la couche de NiCr

- Dans le grain (G) :
- $T < 450^{\circ}C : Dg(Ni) < Dg(Ni(OH)x, NiO)$
- T > 450°C : Diffusion similaire (\rightarrow NiO)
- Dans le joint de grain (GB) : Amplitude dépend de la forme de départ (Ni, Ni(OH)x, NiO)

Au cours du dépôt de la couche de ZnO

Diffusion dans les GBs plus lente

Par le recuit

Diffusion similaire quelles que soient les systèmes étudiés

<u>Diffusion dans les o</u>xydes

Défauts intrinsèques

<u>Défaut</u>	Eb (eV)	<u>T (K</u>)
Zn_i^{2+}	0.57	219
V_{Zn}^{2-}	1.4	539
V_{O}^{0}	1.7	655
$O^{(split)}$	2.36	909
O_i	0.87	335
$O_i^{(oll)}$	1.14	439

[X. Wang and al., Science 316 (2007)]

Zones de charges

Figure 1 The proposed atomic defect model for Schottky barrier at the grain boundary. Also shown is the analogy with band model.

Effets de taille

Fig. 34.9. Defect concentration profiles in nanostructures of ionic materials with dimension d. L_D is the Debye screening length

