

A. Perriot, J. Teisseire, E. Barthel, SVI, CNRS/Saint-Gobain, Aubervilliers France D. Vandembroucq, LPMMH, ESPCI, Paris France T. Deschamps, V. Martinez, B. Champagnon, LPCML, CNRS/UCBL Villeurbanne France V. Chomienne, G. Kermouche, P. Dubujet, LTDS, CNRS/ECL/ENISE, Saint-Etienne, France B. Mantisi, A. Tanguy

Outline

The micromechanics of silicate glasses

- Phenomenology
- Material issues
- **Experiments**
 - Requirements
 - implementation

Outline

mechanics of silicate glasses

some strange features of silica

• plasticity ?

- phenomenology
- mechanisms (-> A. Tanguy)
- **Experiments**
 - Requirements
 - Modelling
 - Finite Element Modelling (cours de F. Pigeonneau)

Non-linear elasticity – silica

Fig. 3 Amorphous metallic alloys combine higher strength than crystalline metal alloys with the elasticity of polymers.

Telford, Materials Today, March 2004

Silica glass: a brittle material ?

Intrinsic strength

Plastic deformation in silicate glasses

Marsh, Proc. Roy Soc A 279 (1964) 420

Figure 6 Micro-photograph of a new lessbrittle glass scribed by a diamond tool.

Ito, The Glass Researcher 11 (2000) 12

Plasticity

Cailletaud, Centre des Matériaux, Ecole des Mines, Evry

Lengthscales

permanent deformation (plastic)

without cracks at small scale

Taylor, Nature, 1949

$$wa^2 = a^3 \frac{{\sigma_y}^2}{E}$$

w: cohesion energy a: spatial extension σ_y : yield stress E: elastic modulus silicate glasses: $a \simeq 10 \mu m$

Silicate glasses toughness

Indentation

Flow and plasticity

•shear flow

- « liquid » like
- •with threshold
 - plastic response

« Brittleness »

scratch resistance

• control surface damage hence effective toughness

SAINT-GOBAIN

Plastic deformation in silicate glasses

- What kind of plastic deformation mechanisms ? What form for the constitutive equation ?
- Local measurement of residual strain and identification of a constitutive equation for the plastic deformation (amorphous silica)
- What about « normal » silicate glasses ?

Plastic deformation of silicate glasses

- Taylor (silica, 1946)
- Bridgman Simon (1953) , Cohen Roy (1961)
- MacKenzie (shear, 1963)
- Marsh (yield stress from indentation, 1964)
- Ernsberger (index, 1968)
- Swain (spherical, 1976)
- Arora (indentation fract., 1979)
- Kurkjian (T, sil. Vs SLS, 1995)
- Suzuki (nanoindent, 2002)
- Yoshida (thermal recovery, 2005)
- Rouxel (Poisson ratio, 2008)

Lengthscales

Indent morphologies macroscopic scale

Plastic deformation – elementary mechanisms

Elementary, local, rearrangements in an amorphous matrix

Plastic deformation – elementary mechanisms

elementary rearrangements in an amorphous matrix – no dislocation... cf colloidal glasses, foam

Plastic deformation – elementary mechanisms

Amorphous silica vs. amorphous silicates

Finite Element Modelling

Analytical models – Elastic

Maillage
 Quadrangles linéaires
 axisymétriques

•Maillage

•Déformation calculée par élément

Vickers 3D – FEM calculation of the densification

Constitutive equation

SAINT-GOBA

Identification – Silicate micromechanics experiments

Nanoindentation

Densification & Raman spectroscopy

Sugiura et al., J. Appl. Phys. 81(4) (1997)

A. Perriot et al. J. Am. Ceram. Soc. 89 (2006) 596-601

Hydrostatic – Strain hardening

T. Deschamps (Vandembroucq et al. J. Phys.: Cond. Mat. 2008)

MD: Huang Kieffer 2004

Hydrostatic – Strain hardening

Hydrostatic – Strain hardening

A. Perriot Vandembroucq et al. J. Phys.: Cond. Mat. 2008

Strain hardening

Nanoindentation – Identification of the shear limit τ_c

G. Kermouche et al. Acta Materialia 56 (2008) 3222

Cross sections – method

G. Kermouche et al. Acta Mater. 56 (2008) 3222 Constitutive relation -- Quantitative

BKS Wolf truncated, mod. S. Ispas

 ϵ - Deformation

B. Mantisi, A. Tanguy (quasi static MD)

Constitutive eq. vs. MD

Macroindents – cross sections

Anomalous glasses (amorphous silica) densification

Normal glasses (float glass) shear bands

Hagan, J. Mater. Sci. 15 (1980) 1417

Other silicate glasses

Correlation between Poisson ratio and density

Surface morphology of the indents

Float glass – Raman µ-spectroscopy

Float glass – Raman maps

600 cm-1 band position, top view

Float glass – Strain hardening

Float glass – Nanoindentation

Identification of the shear limit τ_c


```
Cr<sup>3+</sup> luminescence
```


Silica vs soda-lime glass – isodensification

Float glass – densification – top view

residual strain mapping on microindent cross sections (Raman, lum.)

A. Perriot J. Am. Ceram. Soc. 89 (2006) 596

a quantitative constitutive equation for amorphous silica including densification and strain hardening.

G. Kermouche, Acta Materialia 56, 13 (2008) 3222

other silicate glasses;

Requires a different constitutive equation

other simple loadings: uniaxial compression test, traction ?

Silica pillars

SAINT-GOBAIN

Imperfect geometry

Silica pillars – elastic limit

[GPa]

[GPa]

B

Silica pillars – Stiffness

Conclusion

* methodology

- * micromechanics experiments
- * infer constitutive equation
- * connect with MD

* results

- * provide constitutive equation with predictive power
- * extension to more complex glasses
- * MD can give insight into the form of the constitutive equation

