

2022 USTV GLASS CONFERENCE

Dr. Anne Berthereau September 21, 2022

OWENS CORNING AT A GLANCE

CONSECUTIVE YEARS AS A FORTUNE® 500 COMPANY

*2021 REVENUE

EMPLOYEES PLUS 1 PINK PANTHER COUNTRIES WHERE WE OPERATE

Serving residential, commercial, and industrial markets

INSULATION | ROOFING | COMPOSITES

R&D NETWORK AT OWENS CORNING - GLOBAL IN SCOPE, HUMAN IN SCALE

Summit, IL Granville, OH Gastonia, NC

Monterrey, Mexico

- World headquarters
- Insulation Science and Technology centers
- Roofing and Asphalt Science and Technology centers
- Composites Science and Technology centers

This map shows wholly-owned facilities and it does not include sales offices, warehouses, and joint venture facilities. Last updated March 2019.

🗕 Parainen, Finland

Apeldoorn, Netherlands Tessenderlo, Belgium Zele, Belgium Chambéry, France

Yuhang, China

Taloja, India

Composites – 7 R&D locations

OUR DEEP EXPERTISE HAS A SOLID FOUNDATION

First Board of Directors

1939 World's Fair

Chevrolet Corvette

The color PINK

Recreational boating

Space suits

1975 800-mile Trans-Alaska Pipeline

COMPOSITES: ENABLING A WORLD OF POSSIBILITIES

A leading global producer

of fiberglass

Redefining performance to help customers win in all market segments

Innovator in glass fiber since 1938

2021 Composites Business Revenues:

GLASS FIBER MANUFACTURING

Owens Corning Confidential- Proprietary

GLASS FABRICS TECHNOLOGIES

Owens Corning Confidential- Proprietary

GLASS NON-WOVEN TECHNOLOGIES

Owens Corning Confidential- Proprietary

AGENDA FOR TODAY EVOLUTION OF INDUSTRIAL FIBERS

PLAN

- All started with E glass
- From E glass to H Glass : Business rationales
- Announcing OC solutions $H^2 \& H^3$

CONNECT GLASS FUNDAMENTALS WITH INDUSTRIAL NEEDS

PRODUCT FEATURES:

- Environmentally friendly
- Mechanical properties (modulus...)
- Thermal properties (Softening, CTE)
- Chemical properties (acid, basic, water corrosion)
- Light weight (density)
- Compatibility with resin (thermoset & thermoplastics)

MANUFACTURING FEATURES:

- Processability (T2,T3...) melting, fiberizing
- Cost Competitivness

ALL STARTED WITH E GLASS*

Designation: D578/D578M - 05 (Reapproved 2011)^{E1} D578/D578M - 18

Standard Specification for Glass Fiber Strands¹

4.2 "E" Glass—A family of glasses composed primarily of the oxides of calcium, aluminum, and silicon, which has the following certified chemical compositions.

4.2.1 The following certified chemical composition applies to glass fiber yarn products for printed circuit boards and aerospace.

Chemical	% by Weight
B ₂ O ₃	5 to 10
CaO	16 to 25
Al ₂ O ₃	12 to 16
SiO ₂	52 to 56
MgÖ	0 to 5
Na ₂ O and K ₂ O	0 to 2
TiO ₂	0 to 0.8
Fe ₂ O ₃	0.05 to 0.4
Fluoride	0 to 1.0

4.2.2 The following certified chemical composition applies to glass fiber products used in general applications.

Chemical	% by Weight
B ₂ O ₃	0 to 10
GaO	16 to 25
<u>CaO and MgO</u>	<u>16 to 30</u>
Al ₂ O ₃	12 to 16
SiO ₂	52 to 62
MgO	0 to 5
Total alkali metal oxides	0 to 2

	E glass vs current (2022)
Environmental	
Mechanical	
Thermal	
Chemical	=
Weight	=
Processability	+
Resin compatible	=
Cost position	

PAST TO FUTURE CYCLES ARE SHORTENING | OWENS CORNING: A LEGACY OF GLASS INNOVATION

1930-1940	1940-1950	1950-1960	1960-1970	1970-1980	1980-1990	1990-2000	2000-2010	2010-2020	2020-2030
GEN 1: Build a glass b	usiness & mass	sproduction		GEN2: Sustainability &	New functions (lir	nited capacity)	GEN 3: Performanc capacity	ce with limited	GEN 4: Performances & Capacity
MAJOR INVENTION	E GLASS* A	STM 578		ADVANTEX®*	f + \$ *		H* GLASS		H2* GLASS
VALUE	light, strong	(vs steel, wood)		functional & su	ustainability		step chang	je	Race to Modulus
CAPACITY	from single to	o multiple sourc	es	Specialities business/performance		mass prod	luction	need for capacity	

FROM E TO ADVANTEX TO H GLASS

GROWTH APPLICATIONS DRIVEN

	E glass (reference)	Advantex	Н	H+++
Patent priority date		1995	2004	> 2015
Environmental		++	++	++
Mechanical		+	++	+++
Thermal		+	++	+++
Chemical		+	+	+
Weight		=	=	=
Processability window		=	-	
Resin compatible		=	=	=
Cost position (better)		+	=	-

RACE TO HIGHER MODULUS/\$ – 2 ENABLERS

ENABLER #1: GLASS CHEMISTRY

1st generation	、
2nd generation	(1965 - 2000)
3rd generation (2000- 2010)
next (2020-203	and the second

ENABLER #2: MANUFACTURING TECHNOLOGY

WELCOME TO THE HIGHER MODULUS AREA

H2, H3 ...

MARCH 2021 – INTRODUCING THE H² GLASS GENERATION

玻璃纤维纱 WINDSTRAND[®] 4000

MADE WITH H² GLASS

95 GPa – ITS Modulus² 91 GPa – Single Filament Sonic Modulus¹

- **Patented technology** that delivers highest specific modulus in its class
- Now available with dedicated, reliable large-scale production

玻纤织物 ULTRABLADE® 2

MADE WITH WINDSTRAND® 4000

51 GPa – Laminate modulus at 55% fvf for UD fabrics

• Manufactured with the world's best fabric technology at Owens Corning's state-of-the-art facilities.

拉挤玻板 ULTRASPAR™ 2

MADE WITH WINDSTRAND® 4000

63 GPa – Laminate modulus at 70% fiber volume fraction

• Pultrusion allows us to maximize the power of H² Glass.

¹NOL TR 65-87 testing method - true performance of the material proven by the industry's most advanced and reliable modulus testing for glass fiber. ²ASTM D2343/ISO9163 testing method. Data verified by DNV-GL certified testing laboratory

2023 - INTRODUCING H³ GLASS

GLASS SCIENCE Designed to power th

Designed to power the next wind blade generation.

MORE MODULUS

Modulus increase proven by the most reliable, accurate testing protocols of sonic modulus.

2006	2021	2023
H-GLASS windstrand® 3000a	H ² GLASS WINDSTRAND® 4000	H ³ GLASS windstrand® 5000
90 GPa	95 GPa	100 GPa+
(ITS Modulus)	(ITS Modulus)	(ITS Modulus)
(ITS Modulus) 87 GPa	(ITS Modulus) 91 GPa	(ITS Modulus)

STABLE PERFORMANCE

Stable specific modulus to enable reliable blade design & production.

Data verified by DNV-GL certified testing laboratory (H-Glass, H² Glass). H-Glass WINDSTRAND[®] 3000 properties valid in China. H-Glass properties vary outside of China dependent upon source. H³ Glass targeted performance stated above. Final product performance may vary based upon further development and customer requirements.

ZEBRA – RECYCLABLE WIND BLADES

Design for recyclability

Partnering with customers on recyclable material system

Reducing waste full chain

Through taking a system design mindset

PINKBAR™ Composite Rebar

2x tensile strength compared to steel

Lighter, easy for labor and transportation

Resistance to corrosion, saving maintenance cost

Fast installation

WE NEED YOU TO INVERT The NEXT GLASS

LONGER BLADES

Redefining higher

modulus

LOWER CYCLE TIME

Driving customer

productivity

SUSTAINABLE

Sustainability at our core

As the world and climate changes, so do we – together, as partners we adapt to deliver a material difference in the world.

Together we make the impossible, possible: lighter, stronger, more-durable, more cost-effective.

This is **HOW WE POWER™** the future of sustainable energy.

