



# Fonctionnaliser des verres par laser pour des applications optiques à haute température : tendances, limites et opportunités

#### Matthieu LANCRY and Maxime Cavillon

Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, Orsay, France

Journées USTV – Dijon, Nov 2024



# Functionalizing glasses at high temperatures

#### Why using glass at high temperature ?

- Complex manufacturing shaping (including *optical fibers*).
- *Optical sensors (Τ, Ρ, σ*) with: Multiplexing, chemical/ radiative/ electromagnetic resistance, compactness, lightness, flexibility, long distance...
- Refractory ceramics are a solution but no bending / costly / multimoded / lossy

#### Ok but... what for?



Optical sensors (FBGs) for Oxy-Fuel fluidized bed combustors gaz turbine combustors, engines, next-generation nuclear reactors, process monitoring

# Ultrashort pulses (e.g., 300 fs) (aser Heat Shockwaves gas

How? 3D Ultrafast laser direct writing !

#### A 3D confined HP-HT micro-reactor :

- High Temperatures (1000's K)
- High Pressures (>100's GPa)
- Each pulse contain E > glass formation enthalpy
- Strong gradients (T, P, I, E<sub>dc</sub>)

# Femtosecond laser direct writing (FLDW)

UNIVERSITE PARIS-SACLAY



# HT sensor using fs-Fiber Bragg Gratings (FBG)

#### How works such optical fiber sensors ?



 $λ_B$  sensitive to temperature (or σ, ε) Sensibility :  $\frac{d\lambda B}{dT} \approx 11,2pm/°C$  at  $\lambda \approx 1550 nm$ 

5

niversite

# Can we go beyond silica ?



**Additional properties ?** 

#### **Pulse duration** 200 Wavelength 180 Oxynitrides **Pulse energy** YSIAION Aluminates 160 (Al\_O\_3≥50% Young's modulus (GPa) 140 Bulk metallic Oxycarbides 120 -Aluminates **Repetition rate** Basalt Writing speed 100 -Vitrelov Obsid BKZ 80 SiO, Fluoride 60 Window class ZBLAN Borates Focusing 40 Chalcogenid Phosphates Manufacturing (NA, depth) 20 GASIR Rouxel et al. JACerS, 2007 Chemical process ? 800 1000 1200 1400 1600 1800 0 200 400 600 **Composition ?** Glass transition temperature, T<sub>a</sub> (K) "Inspired" research **Classical investigations** Oriented eutectic $(Al_2O_3/ZrO_2)$ Silica glass Impurities (Cl, OH) Phase GeO<sub>2</sub> dopant Nanocrystal Non-conventional separation fabrication method Laser parameters (energy, speed...)

#### Improve/predict the thermal stability

# Litterature overview



# **Trends and limits**



# Type I – Defects but mostly densification



#### **Optical structure - mechanism**



#### Raman spectra of fs-irradiated SiO<sub>2</sub>



M. Lancry et al. Optical Material Express, Vol. 1, Issue 4 (2011)

#### **Optical property thermal stability**



A thermal stability limited by glass structural relaxation  $\eta(T)/G(T)$ 

# Type II – Self-assembly of porous nanolayers



#### **Optical structure - mechanism**



# « The smallest self-organized nanostructures created by light in glass volume »



Shimotsuma et al. Phys. Rev. B 91 (2003)

Ultrafast decomposition of  $SiO_2$  into x.O<sub>2</sub>

+ SiO<sub>2(1-x)</sub> in less than 1  $\mu$ s !

M. Lancry et al. Laser Photonics Rev. 7 (2013)

#### **Optical property thermal stability**





Part related to defects & stress relaxation But ultimate erasure of nanopores is viscosity driven (mostly)

# Type III – Voids with HPHT densified shell



#### **Optical structure - mechanism**





s-SNOM scattering-type scanning near field optical microscopy made at SOLEIL Synchrotron (SMIS)



densification

#### **Optical property thermal stability**



Thermal stability mostly dictate by nanovoids growth & deformation and densified shell relaxation at high T

# Generalization vs chemical composition - Type I



Compilation of results – isochronal annealing experiments ( $\Delta t = 30 \text{ min}$ )

### Generalization vs chemical composition - Type II



[1]: Cavillon et al., Appl. Phys. A, 2020 [2]: Q. Xie et al., Applied Optics, 2023

## Generalization vs chemical composition - Type II



Compilation of results – isochronal annealing experiments ( $\Delta t = 30 \text{ min}$ )

## Generalization vs chemical composition - Type III





# Any opportunities Going « beyond silica » golden material ?





#### **Ultra-transparent silica fibers**



# 3. Beyond silica and silicates

# Non-conventional manufacturing



#### Molten core method

#### **3D** printed preform method



#### Coupling fs-laser with Molten core, 3D printed method:

 $\rightarrow$  Induce "laser modifications" into "non-conventional" glassy fibers or bulk glasses

 $\rightarrow$  <u>Our objective</u>: Go beyond thermal stability limitations of conventional fibers (e.g. SMF28)

# 3. Beyond silica and silicates

2020-2023

Chalco & Gallo-germanate glasses  $(BaO - Ga_2O_3 - GeO_2)$ 



17

### 3. Beyond silica dedicated to optical telecommunication

2020

Silica or silica - Which type ?



# drawing !

#### Impurities impact on viscosity



#### Towards new silica fibers dedicated to HT sensors?



Clearly a viscosity driven effect Some silica own higher thermal stability than "optical fiber golden silica"

# 3. Beyond silica dedicated to optical telecommunication

3D printed Silica glass







1st cheesy optical fiber



2020

3D Printed Silica Optical Fibre - a "Game Changer" Technology in Optical Fibre Manufacture

Next step : refractory oxide glasses by 3D printing ... a long way



# See 3D printed talk on Friday

#### **3D printed fibers for sensors ?**



 Emerging 3D printed demonstrates similar thermal performances as "golden standard" SMF28 !

# 3. Beyond silica

#### 2020-2023

#### Alumino-silicate glasses $(SiO_2 - Al_2O_3)$



#### $50Al_2O_3/50SiO_2$ (bulk)

Phase separation : nanogratings + Likely Mullite formation







Wang et al., JACerS, 2020

Wang et al., Advanced Optical Materials, 2022



# **Conclusion and perspectives**

# Conclusions



- > Overview of fs-induced index changes thermal stability
- Materials: We can beat "telecom silica" !!!
- Functionalizing approach: Fs laser induced High temperature nanocrystals
- Modeling: Rayleigh-Plesset model -> predict nanopore/voids evolution(t,T) and associated optical property but high Al<sub>2</sub>O<sub>3</sub> glass systems deviate from this trend







Projects: FLAG-IR (2019-2022), REFRACTEMP (2023 – 2026)

# Perspectives



- > Need to develop sensing dedicated fibers (and not simply exploiting existing ones)
- Materials: Molten core, 3D printed fibers: towards new compositions.
- > Model: Build a new predictive model including crystal growth / elemental migration, ...
- > Applications: Can be also exploited for other sensors, 5D data storage, IR birefringent devices...

# Thank you !





3D Printed Silica Optical Fibre - a "Game Changer" Technology in Optical Fibre Manufacture



This new 3D printing method could make fiber optics cheaper

#### Contact us at:

Matthieu.lancry@universite-paris-saclay.fr

Cloud Storage Solutions for the Zettabyte Era !





The different colors of each letter correspond to different orientations of the slow axis of the birefringence