

Formulation de verres de confinement et recherche de base associée

O. Pinet, S. Schuller, M. Neyret, E. Régnier, H. Nonnet, J.L. Dussossoy

CEA- Marcoule DTCD-LCV SECM/LDMC

Procédé de Vitrification actuel

LCV Joint Vitrification Lab

Calcinateur de PF et four de vitrification

(prototype CEA)

Aujourd'hui deux types de procédés mis en œuvre dans le monde

Lid heaters

Canister

Four céramique à Procédé français en 2 alimentation liquide étapes **FP Solution** Off gas Recycling Additive Feed tubes Mise en actif : Glass Gaz • en 1978 de Calciner frit l'atelier de vitrification de Scrubber Marcoule (AVM) Electrodes Melter • en 1989 et 1992 des ateliers de vitrification de la Hague Drain Canister value

France, UK

USA, Russie, Japon, Allemagne

Vue d'une chaîne de vitrification en cellule blindée

La Hague (vue sur le calcinateur) West Valley (US)four céramique

Laboratoire Commun de Vitrification CEA-AREVA à Marcoule

- Missions du Laboratoire d'étude et de Développement des Matrices de Conditionnement:
- Définir et caractériser des formulations de matrices innovantes pour des déchets actuels et à ve (HA & MA-VL surtout):
 - verres
 - céramiques
 - vitrocéramiques
 - composites « verre –métal »
 - Métalliques
- Soutenir la mise en œuvre sur procédé industriel des formulations proposées
- Acquérir les connaissances de base sur les verres nécessaires « en anticipation » aux question: industrielles à venir

Ce2 La formulation d'un verre de déchet est un compromis

Taux de charge en déchet dans le verre final

Solubilité (Cr, Ru, Rh, Pd, Ce, Pu, SO₄, Cl) Séparation de phase (Mo, SO₄, Cl, P) Cristallisation (Mo, P, F, Mg, ...)

Contraintes Technologiques

Température d'élaboration viscosité, réactivité, temps de séjour conductivité électrique et thermique Additifs nécessaires, rédox

Performances du verre

Entreposage et stockage Stabilité Thermique Durabilité Chimique Resistance à l'auto-irradiation La formulation des verres s'appuie sur des connaissances acquises dans le cadre de recherches académiques

Les enjeux de la R&D du futur sur les verres

Elargir la gamme des déchets accessibles à la vitrification

Contribuer à améliorer les performances des procédés de vitrification

recherches appliquées

- solubilité des éléments,
- forme physique et composition des adjuvants de vitrification,
- propriétés physiques des verres (conductivité électrique, comportement rhéologique, conductivité thermique),
- formulations alternatives aux verres borosilicates

recherches académiques

- les propriétés thermochimiques des oxydes fondus
- les phénomènes de cristallisation et de séparation de phase dans les verres,
- la cinétique chimique à haute température
- études structurales

Contribution à la recherche académique sur les verres

- Cristallisation dans les verres et séparation de phase
- Equilibres rédox dans les verres
- Mesures de propriétés physiques des verres fondus:
 - + électrochimie,
 - + comportement rhéologique,
 - + résistivité électrique,
 - + conductivité thermique.

P détermination de courbes de nucléation croissance dans les verres

Round Robin test – températures de liquidus - ICG

Participant	Glass A: ARG-1			Glass B: Zr-9			Glass C: AmCm-19		
	GF	UT	CF	GF	UT	CF	GF	UT	CF
PNNL	1033 ± 2	1038±6	O.S.	947 ± 2	965±5	O.S.	-	1225±5	0.S.
SRNL	-	1024±5	-	-	-	-	-	1214 ± 5	-
INL	1065 ± 2	1046 ± 2	-	966±3	956±3	-	-	-	-
Monarch	-	1034 ± 4	-	-	970±3	-	-	-	-
СЕА	-	1036±2	-	-	-	-	-	1230±2	-
NNL	-	1042 ± 2	-	-	-	-	-	1230±1.5	-
U. Modena	-	1035±5	1042 ± 5	-	-	-	-	-	1239±5
U. Sheffield	-	-	1035±5	-	-	-	-	-	1225±5
ICT	-	O.S.	-	-	-	-	-	0.S.	-
VSL	-	O.S.	-	-	-	-	-	O.S.	-
Average	1048.8	1036.3	1038.5	956.7	963.5	-	-	1224.5	1232
St. Dev.	-	6.8	-	-	7.4	-	-	7.7	-

Thèse X. Orlhac -Coll. Univ. Montpellier II – verre borosilicate d'intérêt nucléaire

Cas de verres au molybdène

Via des mesures spectroscopiques

Via des mesures rhéologiques

Coll. IPGP

Coefficients de diffusion:

rog

D_{rédox} dans les borosilicates fondus

Mesures physiques à haute température – conductivité électrique

 l'influence de différents éléments d'intérêt pour le verre nucléaire sur la résistivité électrique a été étudié (Fe vs rédox, alcalins, platinoïdes...)

Mesures physiques à haute température – conductivité thermique

$$\begin{cases} P = \rho.C_{p}.Q.\Delta T_{water} \\ \Phi_{z} = \frac{P}{S} = K_{th} \frac{\Delta T_{glass}}{\Delta z} \end{cases}$$

$$\Rightarrow K_{th}(W.m^{-1}.K^{-1}) = \frac{\rho.C_p.Q.\Delta T_{water}}{S} \frac{\Delta z}{\Delta T_{glass}}$$

Modélisation de la conductivité thermique par le biais d'un plan d'expérience sur un domaine ciblé de compositions d'intérêt

Variable	Component	Lower limit (% w)	Upper limit (% w)
X ₁	Fe ₂ O ₃	0	0.05
X ₂	NiO	0	0.01
X ₃	CoO	0	0.005
X ₄	Matrix	0.935	1.000
X_4	Matrix	0.935	1.000

Total proportions [Fe₂O₃]+[NiO]+[CoO]+ [matrix] = 1

La formulation des verres nucléaires s'appuie sur

- + une capitalisation des données acquises depuis les années 60 sur le sujet
- + une collaboration étroite avec les autres axes de R&D (procédé, CLT, AREVA industriel partenaire)
- + le développement de recherches de base pertinentes
- + des aller / retours entre recherche appliquée et recherche académique
 ⇒ grâce aux liens tissés dans la communauté verrière

