

Financement

FRACTURE IN OXIDE GLASSES

Cindy L. Rountree

University Paris-Saclay, CEA, CNRS, SPEC, Gif-sur-Yvette, France

MechGlass2024

DAMAGE PROPAGATION IN OXIDE GLASSES

Polariscope Visible stresses

Polariscope Non-visible stresses

~8 minutes to failure

Corning Museum of Glass www.cmog.org YouTube

- Introduction: Stress corrosion cracking
- Measuring the process zone size
 - What is the process zone
 - Results || and \perp to crack front
- SBN Glasses
 - Understanding mesoscale structural fluctuations
 - Mesoscale fluctuations to physical properties
 - Mesoscale fluctuations to fracture properties
- Conclusion

CRACK FRONT STABILITY ... IN LIEU OF A CORROSIVE ENVIRONMENT

Irwin (1955), Orrowan (1957)

K_I: stress intensity factor

Stress intensity factor

stress near the crack tip due to σ_o or residual stresses

$$K_I = \sigma_o \sqrt{crack} f(geometry)$$

... Assessed by finite elements

Propagation of the crack front

 $K_I > K_{Ic}$ Unstable (µs)

K_{Ic} : fracture toughness

CRACK FRONT STABILITY **IN LIEU OF A CORROSIVE ENVIRONMENT**

Lawn, Fracture of Brittle Solids, 1993

(6)

```
DE LA RECHERCHE À L'INDUSTR
```

SUB-CRITICAL CRACKING OF MATERIALS

KNOWNS ABOUT STRESS CORROSION PROPERTIES

KNOWNS ABOUT STRESS CORROSION PROPERTIES

Silica

2nd Question?

 Life is full of environmental factors, can we predict/prevent a glass from failing by knowing its chemical composition, Poisson's ratio, density, other physical properties, etc.?

$$K_{I} = V_{0}(P^{H_{2}0})e^{\left(\frac{-E^{*}+bKr}{RT}\right)} = K_{I} = V_{0}(P^{H_{2}0})e^{\left(\frac{-E^{*}+bKr}{RT}\right)}$$

$$K_{I} > K_{e} = v = v_{o}(P^{H_{2}0})e^{\left(\frac{-E^{*}+bKr}{RT}\right)} = V_{0}(P^{H_{2}0})e^{\left(\frac{-E^{*}+bKr}{RT}\right)} = K_{I} = V_{0}(P^{H_{2}0})e^{\left(\frac{-E^{*}+bKr}{RT}\right)}$$

$$K_{I} > K_{e} = V_{0}(P^{H_{2}0})e^{\left(\frac{-E^{*}+bKr}{RT}\right)} = V_{0$$

OUTLINE

The Questions?

- What is the size of the zone controlling the dynamics of crack propagation?
- Life is full of environmental factors, can we predict/prevent a glass from failing by knowing its chemical composition, Poisson's ratio, density, other physical properties, etc.?

Cea ATOMIC FORCE MICROSCOPIC IMAGING

100 -

200 -[] 300 -

1 µm

0 nm

Crack

Cea ATOMIC FORCE MICROSCOPIC IMAGING

-1.5 nm

2 nm

Propagation Direction

> But Han et al pointed out that the 2D plane stress hypothesized is not relevant considering the scale at which the displacements are studied

t = 0 min. 35 min. 85 min. 120 min. 155 min. 200 min. 255 min. 290 min. 310 min. 1.5 mm

V=3 x 10⁻¹¹ m/s

Cea ATOMIC FORCE MICROSCOPIC IMAGING

Applied IDIC techniques to AFM images of a moving crack

Process Zone $\lesssim 10$ nm

FRESTA

Applied FRESTA techniques to postmortem fracture surfaces

Surfaces match up to within 0.3 nm normal to the surface and 5 nm parallel to the surface DEEP WATER PENETRATION IN SiO₂ DURING STRESS CORROSION FRACTURE

DEEP WATER PENETRATION IN SiO₂ DURING STRESS CORROSION FRACTURE

F. Lechenault et al. PRL 106:165504 (2011) F. Lechenault et al. J. Phys.: Conf. Ser. 319:012005 (2011)

FRACTURE OF SILICA GLASSES: 15 MILLION ATOM SIMULATION

Pure Silica System size 120nm×120nm×15nm (CLR et al., J. Alloys & Compounds 2007)

DAMAGE AHEAD OF THE CRACK TIP IN PURE SILICA

DYNAMIC FRACTURE : A LUMINOUS VIEWPOINT

SUMMARY OF PROCESS ZONE SIZE IN SILICA

|| to the direction of propagation

Process Zone size 5-10nm in Silica which is greater than a single bond length

Rountree and Feng. International Journal of Applied Glass. 2022

- Introduction: Stress corrosion cracking
- Measuring the process zone size
 - What is the process zone
 - Results || and \perp to crack front
- SBN Glasses
 - Understanding mesoscale structural fluctuations
 - Mesoscale fluctuations to physical properties
 - Mesoscale fluctuations to fracture properties
- Conclusion

OUTLINE

The Questions?

- What is the size of the zone controlling the dynamics of crack propagation?
- Life is full of environmental factors, can we predict/prevent a glass from failing by knowing its chemical composition, Poisson's ratio, density, other physical properties, etc.?

Mesoscale fluctuations to physical properties
 Mesoscale fluctuations to fracture properties
 Conclusion

Cea

"STRUCTURAL FLUCTUATIONS" → STRUCTURAL FAILURE

Cea

THE 9 SiO₂-B₂O₃-Na₂O (SBN) GLASSES

Why SBN Glasses?

Three major components of many industrial glasses!

Why changing the chemical composition?

	SiO ₂	B ₂ O ₃	AI_2O_3	NaO ₂	K ₂ O	MgO	CaO
Silica	99.8						
Pyrex	81	13	0.04	2		0.05	0.05
Borosilicate	81	13	2	4			
Fiber wool	64	3	2.92	15.7	0.54	5.22	8.97
	\bigcirc	\smile		\bigcirc			

Cea

THE 9 SiO₂-B₂O₃-Na₂O (SBN) GLASSES

Why SBN Glasses?

Three major components of many industrial glasses!

Why changing the chemical composition?

(24)

(25)

GLASS STRUCTURE – ELEMENTARY UNITS

NUMERATION OF THE RETICULATION LEVEL

© J.M. Delaye

Degree of Polymerization (DP) at the atomic level

PHYSICAL PROPERTIES OF SBN GLASSES

PhD candidate M. Barlet

PHYSICAL PROPERTIES OF SBN GLASSES

PhD candidate M. Barlet

EVOLUTION OF *H*_V

(30)

STRESS CORROSION CRACKING

EVOLUTION OF SCC PROPERTIES

M. Barlet et al, JNCS doi: 10.1016/j.jnoncrysol.2016.07.017

DE LA RECHERCHE À L'INDUSTRI

EVOLUTION OF K_e

K_{SBN}~constant:

- \uparrow [Na₂O] → \uparrow K_e
- [Na₂O] forms pockets or "channels" (Na⁺ rich regions)
- Pockets acts as stress "sinks"
- Stresses are redistributed around these sinks and do not concentrate solely at the crack tip
- This delays the onset of crack propagation causing K_e to increase

M. Barlet et al, JNCS doi: 10.1016/j.jnoncrysol.2016.07.017

EVOLUTION OF FRACTURE PROPERTIES

M. Barlet et al, JNCS 2016. doi: 10.1016/j.jnoncrysol.2016.07.017

BOND TYPE & CRACK PROPAGATION

RETICULATION LEVEL & CRACK PROPAGATION

Degree of Polymerization (DP) at the atomic level

 $DP_{total} = \frac{2 SiSi + 2 SiB + 2 BB + 3 SiSiSi + 3 SiSiB + 3 SiBB + 3 BBB}{Si + B + 2 SiSi + 2 SiB + 2 BB + 3 SiSiSi + 3 SiSiB + 3 SiBB + 3 BBB}$

RETICULATION LEVEL & CRACK PROPAGATION

SUMMARY – SBN GLASSES

Na₂O plays an important non-constant role for different parameters

- → \wedge Na₂O → \wedge Poisson's ratio: linear ratio
- Stress Corrosion cracking: Region 0
 ▲ ↑ Na₂O → ↑ K_e: linear ratio
- Stress Corrosion cracking: Slope in region 1
 Null dependence on Na₂O when Na⁺ ions network compensators
 - A slope when Na⁺ ions network modifiers on Si and B networks

Acknowledgments

- L.Chomat, D. Bonamy, M. Barlet, F. Weng, A. Lesaine, H. Auradou, E Bouchaud, F. Celarie, F. Lechenault, C. Ottina, G. Pallares, S. Prades, L. Ponson, T. Taurines
- J.-M. Delaye, S. Gosse, P. Fossite, B. Boizot, T. Charpentier, D. Vandembrouq, S. Roux, K. Ravi-Chandar, F. Cousin, M. Ciccotti, S. Peuget, V. Lazarus, G. Gauthier

Financement

- ANR ToughGlasses
- CEA-DEN-Vestale
- ANR-Corcosil
- RTRA-FracHet
- IDF-équipement mi-lourd 2011: IMAFMP
- RTRA-IMAFMP
- Dim-Map AFM4aStory
- PALM CoEuRs