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glassforming liquids: shear viscosity

1013 Poise →

10-3 Poise →

§ drastic increase change of dynamics, only small changes in structure

§ relation between structural relaxation and thermodynamics?



glass transition: thermodynamic quantities

behavior of 2nd derivatives of
thermodynamic potentials?

isobaric volume of
polyvinyl acetate

Kalogeras, Lobland, J. Mater. Edu. 34, 69 (2012).



specific heat
§ specific heat at constant volume in canonical ensemble: 
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§ H: Hamilton function of the system

§ canonical average:

…
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… e−βH d Γ  with   Z can = e−βH d Γ  and  β = 1
kBT
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§ Zcan: canonical partition function

§ at constant pressure P in 
isobaric-isothermal ensemble:
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  with  H :  enthalpy



specific heat spectroscopy

N. O. Birge, S. R. Nagel, Rev. Sci. Instrum. 58, 1464 (1987); N. O. Birge, P. K. Dixon, N. 
Menon, Thermochimica Acta 304/305, 51 (1997). 

§ system coupled to a frequency-
dependent heat bath

§ frequency range of 6 decades

§ heat diffusion equation

iωcP (ω )T (x ,ω ) = κ(ω )∂
2T (x ,ω )
∂x 2

cP (ω ) :  specific heat 
κ(ω ): thermal conductivity



frequency-dependent specific heat

N. Menon, J. Chem. Phys. 105, 5246 (1995). 

§ real part of frequency-dependent
specific heat

§ imaginary part of frequency-
dependent specific heat

§ what can one learn from these
data?

cPI (ν )

cPII (ν )



outline

(1) Molecular Dynamics simulation of silica (SiO2)

(2) specific heat of glasses

§ harmonic approximation, vibrational density of states

§ Boson peak

(3) frequency-dependent specific heat in undercooled melts

§ real and imaginary part

§ thermal diffusivity
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Molecular Dynamics simulation

§ classical system of N particles at positions

§ Upot : potential function

§ simplest case: pairwise additive interaction between point particles

§ solution of equations of motion yield trajectories of the particles, i.e.
positions and velocities of all the particles as a function of time
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simulation details: SiO2

uαβ (r ) =
qαqβe2

4πεr +Aαβ exp(−Bαβr )−
Cαβ

r 6

αβ = SiSi, SiO, OO

§ BKS potential for silica:

§ parameters Aαβ, Bαβ, Cαβ in van Beest, Kramer, van Santen, Phys. 
Rev. Lett. 64, 1955 (1990).

§ N = 336 – 8064, simulations at constant density ρ = 2.36 g/cm3

§ undercooled melt 6100 K ≥ T ≥ 2750 K; glass at 300 K (obtained by 
runs from 2750 K with a cooling rate of 1012 K/s

§ tetrahedral network structure

3 - 4 Å
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specific heat for harmonic solid

§ in harmonic approximation: CV =
h2
kBT 2

ν 2 exp(βhν )
exp(βhν )−1( )

2 g(ν )dν0

∞
∫

§ g(ν): vibrational density of states (VDOS),  with ν the frequency

§ VDOS can be obtained from velocity autocorrelation function (VACF):

g(ν ) = 1
NkBT

dt  m j exp(i2πνt ) !v j (t ) ⋅
!v j (0)
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§ low temperatures: Debye theory

gD(ν ) = 3ν 2
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  ⇒   CV (T )∝T 3

§ classical limit: Dulong-Petit law: CV = 3NAkB



vibrational density of states (VDOS)

J. Horbach, W. Kob, K. Binder, J. Phys. Chem. B 103, 4104 (1999); P. Scheidler, W. Kob, A. 
Latz, J. Horbach, K. Binder, Phys. Rev. B 63, 104204 (2001).  

g(ν) for BKS silica:

§ purely classical
calculation

§ ν >30 THz: stretching
modes in single SiO4

unit

§ intermediate frequency
band not in good
agreement with ab initio
calculations



comparison to experiment

CV =
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kBT 2

ν 2 exp(βhν )
exp(βhν )−1( )

2 g(ν )dν0

∞
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§ good agreement
between simulation and
experiment below Tg

§ deviations to the
experiment for T > Tg
mainly due to structural
relaxation (and
anharmonicities)

§ behavior at low
temperatures: T < 50 K

J. Horbach, W. Kob, K. Binder, J. Phys. Chem. B 103, 4104 (1999).



low temperatures: Boson peak

gD(ν ) = 3ν 2
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§ correction: add gD(ν) to
measured g(ν) for v ≤ 
0.73 THz

cL = 6161 m/s
cT = 3915 m/s
⇒ νD =10.65 THz

J. Horbach, W. Kob, K. Binder, J. Phys. Chem. B 103, 4104 (1999).
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q-dependent temperature fluctuation

§ microscopic temperature of a particle:

θ( !pi ) =
1

3kBm
!pi2   with  !pi :  momentum of particle i

T ( !r ,t ) = θ( !pi )δ( !r − !ri (t ))
i=1

N

∑ ,  FT: Tq (t ) = θ( !pi )exp(i !q ⋅ !ri
i=1

N

∑ )

§ microscopic temperature field density:

§ temperature fluctuation in Fourier space:

δTq (t ) =Tq (t )−T ρq (t )



central quantity: ACF of kinetic energy

§ static correlation function
independent of q: STTc = δTq*(0)δTq (0) =

2
3
NT 2

§ time-dependent
autocorrelation function (ACF):

→ K(t) related in harmonic approximation to VACF

→ Laplace transform of K(t) related to frequency-dependent specific heat

→ ΦTT(q,t) related to thermal conductivity

§ normalized ACF of kinetic energy: K(t ) = ΦTT (t )
STTc

ΦTT (q ,t ) = δTq∗(t )δTq (0)
q → 0 :  ΦTT (t ) = δT0

∗(t )δT0(0)



relation between ACF of kinetic energy vs. VACF

§ VACF weighted with mass m:

§ in harmonic approximation the following relation between ACF of the
kinetic energy, K(t),  and J(t) holds:

J(t ) =m !v (t ) ⋅ !v (0)

K(t ) = J(2t )
6kBT

K(t ) = J(2t )
6kBT

  and  ⌢K(ω ) = 1
8
g(ω / 2)

§ this implies a relation between K(ω) and VDOS, g(ω):

§ consistent with simulation?



ACF of kinetic energy vs. VACF: harmonic approximation



ACF of kinetic energy vs. VDOS: harmonic approximation?



ACF of kinetic energy at high temperature

→ two-step decay indicates structural relaxation, relation to specific heat?   



frequency-dependent specific heat

cV =
1

NkBT 2 H 2
can
− H

can

2( )
§ static specific heat per particle in canonical ensemble:

§ microcanonical ensemble: cV =
3kB / 2
1−K(0)

§ generalization to frequency-
dependent specific heat:

cV (z ) = 3kB / 2
1−K(0)− z  LT[K(t )](z )

LT[K(t )](z ) :  Laplace transform of K(t )

§ Fourier transform: z = iω cV (ω ) = c '(ω )+ ic ''(ω )



real part of frequency-dependent specific heat

§ static specific heat at low ω: with decreasing T this regime shifts to
lower frequencies



configurational specific heat

§ define “configurational“ specific heat cconf:

§ vibrational part cvib remains below the glass transition temperature

cconf = cVeq −cvib



specific heat: comparison to experiment II



imaginary part of frequency-dependent specific heat

§ spectrum with α peak at low frquencies and microscopic peak
around 10 THz



the α relaxation

§ define α relaxation time:  τc =1/ωmax



α relaxation times 

§ relaxation times τF obtained from incoherent intermediate scattering
functions for Si and O



autocorrelation function of q-dependent temperature

§ T dependence weak:
no coupling to
structural relaxation

ΦTT (q ,t ) = δTq∗(t )δTq (0)

ΦTT (q ,t )∝T 2

exponential decay at long
times: 

ΦTT (q ,t )∝exp(−t / τq )  with τq =
1

DTq 2 +c

DT =
κ
ncPeq  thermal diffusivity



thermal conductivity

§ thermal conductivity from fit: κ = 2.4 W/(Km)



summary

computer simulation of SiO2 melts and glasses:

§ low temperatures: cV in harmonic approximation using g(ω) from
classical MD simulation

§ frequency-dependent specific heat allows to determine the
contribution of the configurational degrees of freedom to the static
specific heat

§ from ΦTT(q,t) one can extract the thermal conductivity

G. S. Grest, S. R. Nagel, J. Phys. Chem. 91, 4916 (1987);
W. Götze, A. Latz, J. Phys.: Condens. Matter 1, 4169 (1989);
J. K. Nielsen, Phys. Rev. E 60, 471 (1999);
J. Horbach, W. Kob, K. Binder, J. Phys. Chem. B 103, 4104 (1999); 
P. Scheidler, W. Kob, A. Latz, J. Horbach, K. Binder, Phys. Rev. B 63, 104204 (2001).  
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