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We focus on glass fibers for reinforcement and insulation.
We also consider general aspects of glass fibers.
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Climate change is real and man-made!
To mitigate this, we need glass fibers......
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Climate change is real and man-made!
To mitigate this, we need glass fibers......
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Apart from basic research, my team is dedicated to
advancing green energy solution using glass!

» Mitigate climate change
» Make all sustainable

|

.E Connected

Research:
» Reveal the nature of glass
» Make better glasses

Generation



Apart from basic research, my team is dedicated to
advancing green energy solution using glass!

Impact:
» Mitigate climate change
» Make world sustainable

I My talk
Connected

Research:
» Reveal the nature of glass
» Make glass better




Fiberizing processes and fiber applications

Cascade Cucible Preform




To produce ‘good and green’ glass fibers, the following
conditions should be fulfilled:

Melt should be vitrifiable

Melt should be spinnable

Spinnability is measurable

Spinnability are predictable

Melt converts into strong fibers

Fiber should be thermally stable

Melting should be energy-effective

Process should be stable & smart

Then one will be happy©
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Liquid fragility (a measure of the non-Arrhenian behavior)
A crucial dynamic parameter for fiber drawing

It is quantified by the kinetic liquid fragility index m.

{ —— SIiO, (Infrasil)
104 =° DGG
| = = NCS (16Na,010Ca074Si0,)
8 4 X Basalt Seltso
{ = Basalt Komso
6 | ¢ Baslat Obersheld
| 4 Basalt Karshamn
4 - O Anorthosite
Diopside

2_‘ .+ - 25Na,025Li,050P,0 o /
— . CaP,0 Lt
| 206 Mﬁ o
¢

melt workability

fiber spinnability /
chemical durability
glass forming ability N/

crystallisation

2] Ange” Plot liquid fragility
-4 - shear thinning
0 0.2 0.4 0.6 0.8
Ty/T

m

_ dlogn
M= T

(slope at Ty)

m is the rate of the change of
viscosity or relaxation time of a
glass-forming liquid at T,
during cooling or heating.

It is a measure of the non-
Arrhenian behavior

m is an important dynamic
parameter
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The Mauro-Yue-Ellison-Gupta-Allan (MYEGA) Model can
be used to describe melt dynamics

K C
log,g(T) = log,ge + 7 exp | = \

where 77 1s the high temperature limit of viscosity, K and C are constants.

log,n(T) = 1 +(12—1 s - 1) (2-1
09101(T) = log oM + ( 09107700)TexP 12 — log N o T

Mauro, Yue, Ellison, Gupta, Allan, Proc. Nat. Acad. Sci. U.S.A. 106 (2009) 19780

As log,,77,,=-3 and logn (at T,)=12, the MYEGA is simplified to:

l T) = 3+15T9 (m 1) Ty 1
0g10n(T) = Texp 15 T

Zheng, Mauro, Ellison, Potuzak, Yue, Phys. Rev. B 83 (2011) 212202 16




Importance of melt viscosity and liquid
fragility to glass technology
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Continuous fiber drawing

Fast cooling | 1200-1300°C melt Large axial st_ress
(hyperquenching) — hyper-stretching
(> 10° K/s) die T (> 60~70 MPa)

\ 4 ¥
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Extraordinary properties

Heterogeneity == compared to bulk glass!
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Heat capacities of stone wool (cooled at 10° K/s)

Energy ‘bird’
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Determination of the glass transition (Ty)
and the fictive temperatures (Ty)
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Y. Z. Yue, et al., Chem. Phys. Lett. 2002; J. Chem. Phys. 2004



Quenching, relaxation and phase transition in

melt/glass
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Change of viscosity during fiber spinning for a basaltic melt

MYEGA equation:

Equilibrium,

K C
logn = logne + =exp| =
r r Newtonian flow

| T=1084 K = 1.19T_
{ 9.=1.2*10° K/s

A

quilibrium viscosity = Rotation

] = Bending
0- v Compression
) . MYEGA fit
06 08 10 12 14 16 1.8

1000/T (K)

Non-equilibrium flow
\logr = togn + S exp &
0gn = l0gMN TeXp T,

non-equilibrium,
non-Newtonian flow
during fiber drawing

Non-Netonian flow:
Yue, Bruckner, JNCS 1994

Fiber drawing involves hyperquenching, large tension, heat

dissipation, possibly non-Newtonian flow!



The iso-structure viscosity as a function of

cooling rate or fictive temperature (7))
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Basalt melt
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Measured iso-structure viscosity data
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Two important terms for fiberizing

» Fiberizing window:
Temperature-viscosity region, where a melt is stable and spinnable.

= |f T< T, crystallization occurs, hindering fiber formation.

" |f nis too low, the melt stream breaks due to low cohesive force.
» Fiber Spinnability:

It is the ability of a glass-forming melt to be stretched and spun into
defect-free fiber filaments either continuously or discontinuously.



The Angell plot as a guide to define the fiberizing window
(useful for designing spinnable glass compositions)
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Fiber drawing window defined by viscosity (7)
and liquidus (T, or T,) within the Angell plot
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My proposal about how to define and determine
fiber spinnability

Fiber spinnability (F,) increases with viscosity at T (77,) but decreases with surface
tension (4,). Based on this, | propose the following equation to quantify F.:

1 77L>
F.=—]log| —
> YL g(’?c

where y, is the surface tension at liquidus temperature (T,), 77, is the viscosity
at T, and 7. is the lower limit of viscosity for fiber drawing.

Considering that ydiffers only slightly among oxide melts, the fiber spinnability can be

simplified to
ne
F," =log (—)
’ M

According to experiments, 7. can be 50-200 Pa s. Here we set 50 Pa s as
the lower limit of viscosity for continuous fiber drawing.

If =0, a melt is spinnable, otherwise it is not.
Yue, Zheng, Int. J. Appl. Glass. Sci. (2017) ”



Determination of liquidus viscosity (7,)

Determine T, using DSC.

Measure the 7-T relation.

Fit the n~T relation to the MYEGA model.
Introducing T, into MYEGA, we get

l = 3+15Tg (m 1) g 1
0g10ML = 7, P |\ T5 T,

Meaning:
If T,, mand T, are known, we will know the liquidus viscosity.

30



Fiber spinnability F'

A relation between fiber spinnability and
liquidus fragility
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A simple calculation:

When using a typical draw stress (60
MPa) to draw fibers, the strain rate
should be ~4x10° s and fiber

diameter should be ~5 um.

Applying this strain rate to stretch
SiO, fibers, the draw stress would be
120 GPa to get fibers with similar
diameter!

When applying the drawing stress
for E glass fibers to draw SiO, fibers,
the drawing temperature must be
raised to ~3200 K (2927 °C).



Crystallization and melting of a basalt by repeating DSC scans
(Maximum scanning T: T +70 2C)

T 2 downscans (20 K/min) 21th
E :
O O
0 0
(@) &)
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6(I)O | 8(|)0 | 1OIOO | 12|OO
T (°C) T (°C)
Heating curves Cooling curves

Implications:

* There is crystal memory effect.
* Structural order still exists at 70 °C above T,.

Yue, J. Non-Cryst. Solids 2004



Cooling of a basalt melt

from 1300 °C (T,+120°C) from 1400 °C (T +220 °C)
downscans (20 *C/min) -, downscans (20 °C/min) 4
3
2
5 1
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3
O
)
()
1000 ' 1OISO ' 1llOO ' 1150 700 | 8(I)O | 9(I)0 | 1OIOO | 11IOO | 1200
T (°C) T (°C)
Implication:

Structural order disappears only at sufficiently high T.
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Open questions

What is the physical meaning of 7.? Can 7. be
predicted or calculated?

Why and how does a melt filament break?
How can 7, be predicted?

Does the non-Newtonian flow occur during
fiber drawing?

How does fibe structure evolve during
drawing?

How do forming conditions affect properties?
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Tensile strength of fibers increases with
decreasing their diameter! Why?

| E fibers 'Basaltic fibers
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An Increase In axial stress, and hence, in anisotropy will enhance
the strength of glass fibers!

Striking difference btw wool and continuous fibers!




The drawing force Is a key factor determining
the fiber tensile strength.
(Note: other factors: composition, surface .....)

E composition | Basaltic composition

S 4000 -
o ] J
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A 4" B
17 discontinuous fibers 1 discontinuous fibers

@ 10004 | i
7 T A
% . D Bulk glass D Bulk glass
= 0 20 40 60 80 0 20 40 60 80

Axial stress o, (MPa)
Indication: once fiber diameter is known, we can derive the fiber
strength. Fiber diameter is related to optical birefringence.

Lund and Yue, J. Am. Ceram. Soc. 2010
Ya, Deubener, Yue, J. Am. Ceram. Soc. 2009



Stretching of modified random network

Tensile strength is enhanced by
orientation of

e Structural units
 Microchannels

* Internal flaws

e Surface flaws
 Heterogeneous domains

52| draw

e The alignment of micro-channels
requires smaller drawing force than
that of the random structural voids Modifier channels

e But require larger force than that of
macroscopic defects.

Greaves, JNCS (1985) Hypothesis



Scaling the tensile strength with the
annealing temperature (T,)

‘c —
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Implications:

« Three factors governing the tensile strength of fibers, i.e., anisotropy, surface
defects, orientation of defects.
« From the annealing temperature, we can predict the strength decay of fibers.



Contributions of anisotropy and other factors
(Insight from annealing experiments)
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Mechanical history plays a much larger role in enhancing the
tensile strength than thermal history!



Effect of orientation of macroscopic defects on
fiber strength

Wool fibers Continuous fibers

1111

B
1.

&
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\ 4 \4 v \4

Smaller axial drawing force — Larger axial drawing force —
Lower orientation degree of defects (striae, | | —>Higher degree of orientation of
bubbles) — More stress concentration — defects — Less stress concentrations
Lower strength Higher strength




How do the fracture surfaces of basaltic wool fibers look?

AccY Spol Magn  Det WD FExp
200kv'40 9600x SE 84 42 0B2 04

a® -~ :




Defects as initiating points of fracture of stone wool fibers?

(The fracture surfaces are not so smooth as defect-free fracture surface)

Magn Det WE
4800x SE :

-
-

AccV SpotMagn Det WD Exp ———1 2m AccV SpotMagn Del WD Expof=———— 5m
200kvV 40 9600x SE 83 2 OBH4W 24 200kv b0 4800x SE 100 2 0B20003A




Typical fracture pattern of the fibers

AccY Spol Magn Det WD Exp
200kv 40 7000x SE 88 2

Origin Mirror Mist Hackle

» Self-cracking process
 Fracture speed and stability determine the fracture surface roughness.

Lund, Yue, J. Ceram. Soc. Japan 2009



Diameter dependence of hardness (H) and
elastic modulus (E,) by nano-indentation

All indents were

made with 1 mN load.
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Lonnroth, Muhlstein, Pantano, Yue, J. Non-Cryst. Solids (2008)




Dependence of the tensile strength of the filtration mat of glass

fiber wool on fiberizing techniques
(in collaboration with Hollingsworth and Vose Company, PSU and QLUT)

Rotary

Spinning
Mat of F-fibers
have higher
strength than R-
fiber mat.

Flame

spinning

Both have same chemical composition

46

Zhang, Vulfson, Zheng, Luoc, Kim, Yue, J. Non-Cryst. Solids 476 (2017) 122-127



Difference in the number of surface hydrogen bonds
between Fibers R and F

Increase in

hydrogen bonding Free-OH
< —

C-H

R-fibers

SFG intensity (a.u.)

F-fibers

| - | - | - | - | - | - |
2800 3000 3200 3400 3600 3800 4000

Wavenumber (cm™)

Large difference in H-bonding can be identified:
The surface of F-fibers has more H-bonds than R-fibers.
Thus, F-fiber mat exhibited higher strength. 47



Comparison in T; between R- and F- fibers

R-fibers
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Question: which factor is dominant, OH or drawing force?
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Implications:

F-fibers are thinner,
undergo larger drawing
force, higher anisotropy
Hence, higher strength

48
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Challenging questions

We gained some insights into fiberizing window, fiber
spinnability and fiber mechanical properties.

But what is the physics behind fiber spinnability?

It is known that glass fiber modulus affects the
performance of the fiber-reinforced composite.

But it is less known about HOW. How is the composite
performance affected through fiber modulus?

What is the maximum modulus for an oxide
composition to reach?
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Thanks all my co-authors and
collaborators!
Thanks for your attention!
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