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We focus on glass fibers for reinforcement and insulation.
We also consider general aspects of glass fibers.
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Fiberizing processes and fiber applications
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To produce ‘good and green’ glass fibers, the following 
conditions  should be fulfilled:

Melt should be vitrifiable

Melt should be spinnable

Melting should be energy-effective

Melt converts into strong fibers

Process should be stable & smart 

Then one will be happy☺

Spinnability is measurable

Spinnability are predictable

Fiber should be thermally stable 
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High glass-forming ability

High glass stability
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High critical cooling rate 
(qc) in TTT diagram

high Tg/Tm and  (Tm)

Hruby parameter

KH cannot be obtained 
for good glass formers, 
e.g., silica, due to 
absence of crystallization 
peak.

KH cannot be obtained 
for extremely poor glass 
formers, e.g., water, due 
to the overlap of  
crystallization with glass 
transition. 

 (Tm) might be the best 
criterium, as it can be 
measured for all liquids.

Zheng, Zhang, Montazerian, Gulbiten, Mauro, Zanotto, Yue*, Chemical Reviews 2019
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Liquid fragility (a measure of the non-Arrhenian behavior)

A crucial dynamic parameter for fiber drawing
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It is quantified by the kinetic liquid fragility index m.

• m is the rate of the change of  

viscosity or relaxation time of a 

glass-forming liquid at Tg

during cooling or heating.

• It is a measure of the non-

Arrhenian behavior

• m is an important dynamic 

parameter
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The Mauro-Yue-Ellison-Gupta-Allan (MYEGA) Model can 

be used to describe melt dynamics 

where ∞ is the high temperature limit of viscosity, K and C are constants.

Mauro, Yue, Ellison, Gupta, Allan, Proc. Nat. Acad. Sci. U.S.A. 106 (2009) 19780

As log10=-3 and log (at Tg)=12, the MYEGA is simplified to:

Zheng, Mauro, Ellison, Potuzak, Yue, Phys. Rev. B 83 (2011) 212202 16
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Importance of melt viscosity and liquid
fragility to glass technology
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rotating drum

free liquid jet

die

reservoir

Continuous fiber drawing

Fast cooling 

(hyperquenching)

(> 105 K/s)

Lower density

Larger Cp,exc

Larger DSexcess

Higher Tf

Large axial stress 

hyper-stretching

(> 60~70 MPa)

Non-Newtonian flow

Oriented structure

Large DSexcess

Oriented defects

Extraordinary properties

compared to bulk glass!

fiber Bulkliquid

Heterogeneity
Surface

1200-1300°C melt

die

than bulk 
glass

melt jet

drum



Heat capacities of stone wool (cooled at 106 K/s)
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Determination of the glass transition (Tg) 

and the fictive temperatures (Tf)

Basic equation:

Y. Z. Yue, et al., Chem. Phys. Lett. 2002; J. Chem. Phys. 2004
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Quenching, relaxation and phase transition in 
melt/glass
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Zheng, Zhang, Montazerian, Gulbiten, Mauro, Zanotto, Yue*, Chemical Review 2019

Yue, J. Non-Cryst. Solids 2022 



Change of viscosity during fiber spinning for a basaltic melt
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Fiber drawing involves hyperquenching, large tension, heat 
dissipation, possibly non-Newtonian flow!

Non-equilibrium flow

non-equilibrium, 
non-Newtonian flow
during fiber drawing

Equilibrium, 
Newtonian flow
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MYEGA equation:
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Yue, Brückner, JNCS 1994



The iso-structure viscosity as a function of 
cooling rate or fictive temperature (Tf)
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Measured iso-structure viscosity data
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Two important terms for fiberizing

➢ Fiberizing window:

Temperature-viscosity region, where a melt is stable and spinnable.

▪ If T < TL, crystallization occurs, hindering fiber formation.

▪ If  is too low, the melt stream breaks due to low cohesive force. 

➢ Fiber Spinnability:

It is the ability of a glass-forming melt to be stretched and spun into 
defect-free fiber filaments either continuously or discontinuously.

26



The Angell plot as a guide to define the fiberizing window
(useful for designing spinnable glass compositions)



Fiber drawing window defined by viscosity () 
and liquidus (Tm or TL) within the Angell plot
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My proposal about how to define and determine 
fiber spinnability

where L is the surface tension at liquidus temperature (TL), L is the viscosity 
at TL, and C is the lower limit of viscosity for fiber drawing.

29Yue,  Zheng, Int. J. Appl. Glass. Sci. (2017)

𝐹𝑠′ = log
𝜂𝐿
𝜂𝑐

Considering that  differs only slightly among oxide melts, the fiber spinnability can be 
simplified to 

According to experiments, C can be 50-200 Pa s. Here we set 50 Pa s as 
the lower limit of viscosity for continuous fiber drawing.

If F’S 0, a melt is spinnable, otherwise it is not.

Fiber spinnability (Fs) increases with viscosity at TL (L) but decreases with surface 
tension (L). Based on this, I propose the following equation to quantify Fs:  

𝐹𝑠 =
1

𝛾𝐿
log

𝜂𝐿
𝜂𝑐



Determination of liquidus viscosity (L)

• Determine TL using DSC.

• Measure the -T relation.

• Fit theT relation to the MYEGA model.

• Introducing TL into MYEGA, we get

30
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Meaning:
If Tg, m and TL are known, we will know the liquidus viscosity.



A relation between fiber spinnability and 
liquidus fragility
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A simple calculation:

When using a typical draw stress (60 
MPa) to draw fibers, the strain rate 
should be ~4x105 s-1 and fiber 
diameter should be ~5 m.

Applying this strain rate to stretch 
SiO2 fibers, the draw stress would be 
120 GPa to get fibers with similar 
diameter!

When applying the drawing stress 
for E glass fibers to draw SiO2 fibers, 
the drawing temperature must be 
raised to ~3200 K (2927 C).
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Implications: 
• There is crystal memory effect.
• Structural order still exists at 70 C above TL. 

Yue, J. Non-Cryst. Solids 2004



Cooling of a basalt melt
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Open questions
• What is the physical meaning of C? Can C be 

predicted or calculated?

• Why and how does a melt filament break? 

• How can L be predicted?

• Does the non-Newtonian flow occur during 
fiber drawing?

• How does fibe structure evolve during 
drawing?

• How do forming conditions affect properties?
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Tensile strength of fibers increases with 
decreasing their diameter! Why?

An increase in axial stress, and hence, in anisotropy will enhance 

the strength of glass fibers!

Striking difference btw wool and continuous fibers!
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The drawing force is a key factor determining 

the fiber tensile strength.

(Note: other factors: composition, surface …..)

Lund and Yue, J. Am. Ceram. Soc. 2010
Ya, Deubener, Yue, J. Am. Ceram. Soc. 2009

Indication: once fiber diameter is known, we can derive the fiber 
strength. Fiber diameter is related to optical birefringence.



Stretching of modified random network

Greaves, JNCS (1985)

F

F

draw

Modifier channels

Tensile strength is enhanced by 
orientation of
• Structural units
• Microchannels 
• Internal flaws 
• Surface flaws
• Heterogeneous domains

• The alignment of micro-channels 
requires smaller drawing force than 
that of the random structural voids

• But require larger force than that of 
macroscopic defects.

Hypothesis



Scaling the tensile strength with the 
annealing temperature (Ta)

Implications: 

• Three factors governing the tensile strength of fibers, i.e., anisotropy, surface 

defects, orientation of defects.

• From the annealing temperature, we can predict the strength decay of fibers.
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Mechanical history plays a much larger role in enhancing the 

tensile strength than thermal history!



Effect of orientation of macroscopic defects on 
fiber strength

Larger axial drawing force →

→Higher degree of orientation of 

defects → Less stress concentrations

Higher strength

Smaller axial drawing force →

Lower orientation degree of defects (striae, 

bubbles) → More stress concentration →

Lower strength

Wool fibers Continuous fibers



How do the fracture surfaces of basaltic wool fibers look?
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Defects as initiating points of fracture of stone wool fibers?

(The fracture surfaces are not so smooth as defect-free fracture surface)

E F

G H



Typical fracture pattern of the fibers

Origin Mirror Mist Hackle

•    Self-cracking process

•    Fracture speed and stability determine the fracture surface roughness.

HackleMist

Mirror

Lund, Yue, J. Ceram. Soc. Japan 2009



Diameter dependence of hardness (H) and 
elastic modulus (Er) by nano-indentation

All indents were

made with 1 mN load.

Lonnroth, Muhlstein, Pantano, Yue, J. Non-Cryst. Solids (2008)

Wool fibers from

 E and basalt glass



Dependence of the tensile strength of the filtration mat of glass 
fiber wool on fiberizing techniques

(in collaboration with Hollingsworth and Vose Company, PSU and QLUT)

46

Mat of F-fibers
have higher 
strength than R-
fiber mat.

Rotary 
Spinning

Flame
spinning

Both have same chemical composition

Zhang, Vulfson, Zheng, Luoc, Kim, Yue, J. Non-Cryst. Solids 476 (2017) 122-127



Difference in the number of surface hydrogen bonds 
between Fibers R and F 

47

Large difference in H-bonding can be identified:
The surface of F-fibers has more H-bonds than R-fibers.
Thus, F-fiber mat exhibited higher strength.



Comparison in Tf between R- and F- fibers
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Implications:
F-fibers are thinner, 
undergo larger drawing 
force, higher anisotropy
Hence, higher strength

Question: which factor is dominant, OH or drawing force?
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• We gained some insights into fiberizing window, fiber 
spinnability and fiber mechanical properties.

• But what is the physics behind fiber spinnability?

• It is known that glass fiber modulus affects the 
performance of the fiber-reinforced composite. 

• But it is less known about HOW. How is the composite 
performance affected through fiber modulus?

• What is the maximum modulus for an oxide 
composition to reach?

Challenging questions



Some references



Thanks all my co-authors and 
collaborators!
Thanks for your attention!
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