

Daniel R. Neuville Géomatériaux, IPGP-CNRS-Université de Paris neuville@ipgp.fr

Thanks :

C. Le Losq, IPGP P. Florian, L. Hennet, D. Massiot -CEMHTI L. Cormier - IMPMC N. Trcera - SOLEIL

What is viscosity ?

Viscosity equation ?

Arrhenius : $\eta(T) = A.exp(E/RT)$ ⇔ log η= A + B/T

Yes but only for SiO₂, GeO₂, NaAlSiO₈, **KAlSiO**₈ because activation energy change from 2000kJ/mol at 1000K up down 300kJ/mol at 1800K for NS3.

Need TVF equation $\log \eta = A_1 + B_1/(T-T_1)$

But, just a fit

Viscosity equation ?

$\eta(T) = A_e.exp[B_e/TS^{conf}(T)]$

Proposed by Adam and Gibbs 1965

First used to silicate melts by Urbain 1972,

Wong and Angell 1976, Scherer 1984, Richet 1984, Neuville and Richet 1991....

 $S^{conf}(T) = (S^{conf}(Tg))$ Cp^{conf} / Tat

 $Cp^{conf}(T) = Cpg(Tg) - Cpl(T)$

Calorimetry measurements => Easy

Configurational entropy

Glass image ? Zachariasen, 1932

Short range order <3 Å:

 Coordination, bond length, bond angle
homopolar (-Se –Se, -C-C, -As-As) versus heteropolar (Si-O, B-O, Ge-S)

Medium (intermediate) range order (~3-10Å):

 angles between structural units
connectivity between structural units (linkage by corner, edge, face)
dimensionnality, rings

Almost no long order (no periodicity !) :

phase separationinhomogeneities

Zachariasen's rules for glass formation

Géomatériaux

Zachariasen model (1932)

1. Each oxygen atom linked (bonded) to no more than two glass-forming cations (e.g. Si⁴⁺).

2. Oxygen coordination number (CN) around glassforming cation is small: 3 or 4.

3. Cation polyhedra share corners, not edges or faces.

4. The polyhedral structural units form a **3-D continuous random network** in which every polyhedron shares at least 3 corners with its neighbors.

Zachariasen model (1932) STEM image Huang et al., (2012)

Géomatériaux

City

⊜Si ⊚O ●C

Zachariasen model (1932) STEM image Huang et al., (2012)

W

N. Trcera, SOLEIL

Gross and Ramanova, 1929

Raman : vibrations of v-SiO₂

Structure versus properties of silicate melts

Géomatériaux

IPGP NSTITUT DE PHYSIQUI IU GLOBE DE PARIS

Leko et al. , Soy. J. Glass Phys. Chem., 1977, 3, 204-210 and Neuville, Chem Geol, 2006, 229, 28-42

Multicomponent oxide glasses

Non-network formers (alkali, alkaline-earth, transition elements) decrease the network connectivity, Tg, η by forming **non-bridging oxygens** (NBO) (=/bridging oxygens BO)

=>Network modifier

Qⁿ species *n* = number of bridging oxygens by tetrahedra

Zachariasen–Warren network theory

Modified random network - MRN (Greaves, 1985)

Relationships with conductivity, alteration etc

Al substitute to Si in tetrahedral position

Al : (Ne)3s²3p¹ : 3 valence electrons => ions Al³⁺

(AlO₄)⁻ charge electroneutrality ensures by the presence of alkali or alkaline earth

Similar for (BO₄)⁻

Géoma<u>tériaux</u>

Géomatériaux

Neuville D.R., Cormier L, R., Flank A.M., Prado R.J. and Lagarde P. (2004) Na K-edge XANES spectra of minerals and glasses. Eur. J Mineral, 16, 809-816.

Géomatériaux

⇒ Chemical shift of ²³Na, from network modifyer to charge compensator

Le Losq Ch., Neuville D.R., Florian P., G.S. Henderson and Massiot D. (2014) Role of Al3+ on rheology and nano-structural changes of sodium silicate and aluminosilicate glasses and melts. Geochimica Cosmochimica Acta, 126, 495-517.

Hehlen B. and Neuville D.R. (2015) Raman response of network modifier cations in alumino-silicate glasses. The Journal of Physical Chemistry B. 119,

Géomatériaux

Hehlen B. and Neuville D.R. (2015) Raman response of network modifier cations in alumino-silicate glasses. The Journal of Physical Chemistry B. 119, 4093–4098.

Géomatériaux

Cicconi M.R., de Ligny D., Gallo T. M., Neuville D.R. (2016) Ca Neighbors from XANES spectroscopy: a tool to investigate structure, redox and nucleation processes in silicate glasses, melts and crystals. American Mineralogist, 101, 1232-1236.

Géomatériaux

Strong Relationships between structure, and properties conductivity, viscosity, alteration etc....

Le Losq C, Neuville D.R., Florian P., Massiot D., Zhou Z., Chen W., Greaves N. (2017) Percolation channels: a universal idea to describe the atomic structure of glasses and melts. Scientific Reports, 7, Article number: 16490, doi:10.1038/s41598-017-16741-3

Percolation channels: a universal idea to describe the atomic structure and dynamics of glasses and melts

15

Géomatériaux

Le Losq C, Neuville D.R., Florian P., Massiot D., Zhou Z., Chen W., Greaves N. (2017) Percolation channels: a universal idea to describe the atomic structure of glasses and melts. Scientific Reports, 7, Article number: 16490, doi:10.1038/s41598-017-16741-3

Percolation channels: a universal idea to describe the atomic structure and dynamics of glasses and melts

Géomatériaux

tectosilicate silica-rich melts. Chemical Geology, 346, 57-71.

rich melts. Chemical Geology, 346, 57-71.

At lower SiO₂ concentration...

lts Ge

IPGP INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

General Introduction - D. NEUVILLE	X-ray Emission Spectroscopy - P. GLATZEL	Raman Spectroscopy - B. HEHLEN	Static NMR - P. FLORIAN	Ab initio simulation - M. GONZALEZ
Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
X-ray & neutron scattering - G. VAUGHAN & G. CUELLO	X-ray Imaging - M. COTTE	IR Spectroscopy - D. de SOUSSA M.	Dynamic NMR - D. MASSIOT	Access to instruments - F. d'ACAPITO & E. MITCHELL
				Conclusions
Lunch	Lunch	Lunch	Lunch	
				Lunch
X-ray Spectroscopy - Y. JOLY	X-ray Photoemission Spectroscopy - D. FOIX	Practicals	XPCS - B. RUTA	
Coffee break	Coffee break		Coffee break	
Practicals	Practicals	Coffee break Visits to beamline	Practicals	

