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All-Solid-State batteries (ASSB)

Principle, benefits and challenges
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1 All-Solid-State batteries
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Energy

E = 
𝐶𝑐×𝐶𝑎

𝐶𝑐+𝐶𝑎
Vcell

Power

P = VcellI

Principle of a conventional lithium-ion battery
Capacity C (A.h)LiCoO2

Cgraphite

Charge of the battery

LiCoO2  Li1-xCoO2 + x Li+ + x e- (xmax =0,5)

6C + x Li+ + x e-  LixC6

𝐶 =
𝐹. 𝑥

3600.𝑀
=
96485. 𝑥

3600.𝑀

Ccathode(LiCoO2)theo = 135 mAh.g−1

Canode(C6)theo=
96485.1

3600.(6×12)
= 

= 372 mAh.g−1
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1 All-Solid-State batteries
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Current manufactured batteries still face issues:

Flammable organic solvent

- Deformation and ignition due to overheating.

- Leakage of liquid electrolyte.

USA, oct. 2013

TESLA Car: LFP/Graphite Dreamliner Boeing 787

january 2013, 

(Boston, Japon)oct. 2006

Dell,  Apple 

batteries Sony

Package down-sizing: EV

https://www.toyota.com.bh/about/technology/environmental-

technology/next-generation-secondary-batteries/

Energy density increase

Energy density

= capacity x potential

volumetric and 

gravimetric energy 

densities (Wvol, Wgrav)

Wvo

l

Wgrav



October 7, 2021 École thématique Verres & Diffusion

1 All-Solid-State batteries
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high-energy cathode material

LiCoPO4 4.8 V vs. Li/Li+ ∼801 Wh kg−1

LiNi0.5Mn1.5O4 4.7 V vs. Li/Li+ ∼690 Wh kg−1

positive electrode materials

Li4Ti5O12

negative electrode materials

Lithium 

metal

Stability window

liquid electrolyte

SEI

Stability window

Solid electrolyte?

lithium (Li) metal 

- high theoretical specific capacity (3860 mAh g−1), 

- low density (0.59 g cm−3) 

- and the lowest negative electrochemical potential

 ideal negative electrode for the high energy 

density rechargeable batteries

Energy density

= capacity x potential

volumetric and 

gravimetric energy 

densities (Wvol, Wgrav)

Wvo

l

Wgrav

Energy density increase
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1 All-Solid-State batteries
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J. Janek & W. G. Zeier, Nature Energy, Vol. 1 , 2016

Typical battery architectures for the conventional lithium-ion and all-solid-state batteries (ASSB)

Conventional

lithium-ion 

batteries

Lithium ion all-solid-state 

battery with a 

conventional anode

Solid state battery

with a lithium-metal

anode

Porous anode

Negative electrode

Graphite

372 mAh.g−1

Porous cathode

Positive electrode

LiCoO2

135 mAh.g−1

Cu 

collector

Al

collector
Thin separator

Q(Limetal)theo=
96485×1

3600×(6.94)

= 3862 mAh.g−1
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1 All-Solid-State batteries
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Interface

J. Janek & W. G. Zeier, Nature Energy, Vol. 1 , 2016

electric resistance between electrolytes and electrode materials is large because of the limited contact area 

 solid composite electrodes ensuring sufficient electronic and ionic percolation have to be formed

Interface with

Lithium metal

Interface with

positive active 

materials
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1 All-Solid-State batteries
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Solid electrolyte
Ranking of properties of solid electrolytes (5 = best, 1 = worst).

ion10-4 S.cm-1

L. Han et al, Frontiers in energy research, Vol. 8, article 202, 2020

Low electron  10-12 S.cm-1
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Glasses and glass-ceramics for ASSB

Requirements and promising solid electrolytes

2

10
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Inorganic solids

(crystalline, glass or glass-ceramics )

Li+

Na+

Ag+ (not developed in this presention as less results)

Which ionic conductors?

Organic Solid Polymers

Solid Polymer Electrolytes (SPE)

Gel Polymer Electrolytes (GPE)
80 °C to operate (BlueCar)

(not developed in this presention)
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1,530 Publications (glass & glass-ceramic)

Total From 1900  to 2021

1970 1980 1990 2000 2010 2020

Ag

Li

Na

AgI-Ag2SeO4

Li2O-SiO2-Al2O3

Na2S-GeS2

Na2S-SiS2

Na2S-P2S5

Li2S-P2S5

Li2S-P2S5-LiI

Li2S-B2S3-LiI

Li2S-(Ge,Si)S2-LiI

Anion doped Li2S-P2S5-SiS2

Li2S-P2S5-LiX (Br, Cl, I)

Li2S-P2S5 -B2S3

Li2S-P2S5

Li2S- SiS2 

Li2S- SiS2 – Li3PO4

Li2S- SiS2 – Li2SO4

Li2S- SiS2 – Li4SiO4

Li2S- SiS2 – Li4GeO4

LAGP Li1.5Al0.5Ge1.5(PO4)3

LATP Li1.3Al0.3Ti1.7(PO4)3

1997

Li2S-P2S5 75-25 or 80-20

 Glass ceramic Li7P3S11

Glass ceramic Li3PS4-Li4SiS4

Li2S-P2S5 - Li2O

Li2S- SiS2 - Li4SiO4

Classical melt quenching or twin-roller Ball-milling

Na3PS4-Na4SiS4

2012
Argyrodite

Li6PS5X (X=Cl, Br, I)

Glass-ceramic

Antiperovskite

Li3ClO

2012

2014

Li7P2.9Sb0.1S10.75O0.25

Solvent 

assisted

technique

1993

LIPON*

* microbatteries

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Glass formation

Melting

+ quenching

Ball-milling (BM)

Nature of the balls and jarrs

Speed

Duration of milling

… 

thermal-image furnace 

and twin roller

1970 1980 1990 2000 2010 2020

1997

Classical routes

From the 1970s to 2000
New synthetic routes 

Since the 2000s

Solvent assisted synthesis
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Inorganic solids

(crystalline, glass or glass-ceramics )

Li+

Na+

Ag+ (not developed as less results)

Which ionic conductors?

Oxides and phosphates

- Brittle

and often experience mechanical failure

through cracking

- Sintering at high temperature

- Sulfides are ductile 

- easily form dense cathode and anode 

composites

Chalcogenides

- Handling under room atmosphere

- But moisture sensitive: 

partial hydrolysis &H2S toxic gas 

formation

 Drop ionic conductivity

 Safety problems
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

interest of glasses compared to crystallized phases

▪ Wide selection of composition

(100-x)Li2S-xP2S5

Li2S-P2S5- LiI

Li2S-SiS2

▪ Non flammability

▪ Easy film formation

▪ Ionic conductivity generally  Ionic conductivity crystal

▪ Single cation conduction 

Li+ for Li conducting glasses

Na+ for Na conducting glasses

Heating

▪ Stable crystalline phase with lower Grain-

Boundary resistance

LATP

LAGP

▪ Glass-ceramics

80-20 Li2S-P2S5

70-30 Li2S-P2S5

Li7P3S11

Argyrodite Li6PS5X (X = Cl, Br, I)

▪ Superionic conductive crystal

Li7P3S11

Na3PS4
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Glass-ceramic formation

J. Deubener et al., Journal of Non-Crystalline SolidsVolume 501, 2018, Pages 3-10

Updated definition of glass-ceramics

The critical cooling rate is qc = (TL – TN) / δt

with TL = liquidus temperature, 

and TN = “nose temperature” 

(=temperature at which the time δt to achieve a crystal 

fraction of 10−6 is shortest). 

Glass formation by melt-quenching for q ≥ qc. 

“Uncontrolled” spontaneous crystallization for q < qc. 

✓ glass-ceramic A obtained during cooling, 

✓ glass-ceramics B and C converted by single and double-stage 

heat-treatments, respectively.

S. Liu et al, J. Mater. Chem. C, 2019, 7, 15118-15135

Schematic description of the conversion of a glass into a glass-

ceramic. 
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Volume changes from glass to crystal 

with increasing temperature

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Superionic conductive crystal

M.  Tatsumisago & A. Hayashi, Solid State Ionics, Volume 225, 4 October 2012, Pages 342-345

Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries

Heating of a glass beyond the glass-transition temperature usually 

results in crystallization with decreased conductivity. 

However, if the corresponding crystal has a high-temperature 

superionic phase, crystallization tends to lead to the formation of the 

high-temperature superionic phase as a metastable phase.

Inclusion of high-temperature, superionic, crystalline phases, with 

larger volumes and are metastable at room temperature (RT).

α-AgI (by suppression of the α ➔ β transformation) in 82AgI -13.5Ag2O-4.5B2O3

T. Saito, J. Electrochem. Soc. 143 (1996) 687–691

M. Tatsumisago, J. Phys. Chem. 98 (1994) 2005–2007

M. Tatsumisago, Solid State Ionics. 225, (2012) 342–345

Li7P3S11 in 70Li2S-30P2S5 glass

A. Hayashi, Nature Communications 3 (2012) Article number: 856, 1-5. 

Na3PS4
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Stable crystalline phase with lower Grain-Boundary resistance

S. Duan, Journal of Power Sources, Volume 449, 15 February 2020, 227574

Li2CO3 + Al2O3 + GeO2+ NH4H2PO4

 Li2O· 6.17 Al2O3· 37.04 GeO2· 37.04 P2O5 glass (mol%)]

1350 °C

2 h

380 °C

1 h

500 °C

2 h

Thermal 

stress 

release

Glass (G)

+

Glass-ceramic

GC

+

850 °C

825 °C

800 °C

775 °C

8 h

Li1.5Al0.5Ti1.5(PO4)3  glass-ceramic about 110-4 Scm-1  ceramic 6 10-5 Scm-1  glass 10-10 -10-8 Scm-1

Li1.3Al0.2B0.1Ti1.7(PO4)3 (LATBP) 

Li1.3Al0.3Ti1.7(PO4)3 (LATP)
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Stable crystalline phase with lower Grain-Boundary resistance
C-LATP GC-LATP GC-LATBP Arrhenius plots of bulk conductivity

S. Duan, Journal of Power Sources, Volume 449, 15 February 2020, 227574

𝜎. 𝑇 = 𝐴. 𝑒𝑥𝑝 −
𝐸𝑎
𝑘𝐵 . 𝑇

• inhomogeneous distribution of boron and glassified grain 

boundaries

 reduces interfacial resistance at grain boundaries with 

little effect on bulk resistance, 

• grain boundary resistance of ceramics, on the other hand, is 

increased by boron 

 higher conductivity in glass-ceramics, while boron can relax 

their grain boundaries even further.

T Absolute temperature 
k Boltzmann constant
A Pre-exponential factor
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F. Mizuno, Electrochemical and Solid-State Letters, 8 (11) A603-A606 (2005)

New Lithium-Ion Conducting Crystal Obtained by

Crystallization of the Li2S–P2S5 Glasses

Mechanical milling

Li2S+P2S5

Al2O3 balls and pot

20 h at 370 rpm

From glass to glass-ceramic: 70Li2S-30PSS5

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

DTA curve for the 70Li2S·30P2S5 (mol %)

mechanically milled sample.

• Glass transition Tg is observed at around 210°C

• Crystallization Tc is observed at 240°C,

Temperature dependences of the conductivities 

for xLi2S·100 − xP2S5 mol % glass-ceramics with

several compositions ( Tc T  260°C)

75

67

70

80

• Li4P2S6 crystal with x = 67 mol, 10−6 S.cm−1

• Highest conductivities with x = 70 and 80 :

glass-ceramic thio-LISICON II or III analog, 

10−4 S cm−1.
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

F. Mizuno, Electrochemical and Solid-State Letters, 8 (11) A603-A606 (2005)

New Lithium-Ion Conducting Crystal Obtained by Crystallization of the Li2S–P2S5 Glasses

XRD patterns of the 70Li2S·30P2S5 (mol %)

glass-ceramics obtained by heating the glasses

highly

conductive 

new

crystalline 

phase

Glass-ceramic and superionic phase: Li7P3S11
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M. Tatsumisago, Journal of Asian Ceramic Societies 1 (2013) 17–25

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

temperature dependence of conductivities 

for the 70Li2S·30P2S5 (mol%) glass and glass–ceramics

70Li2S·30P2S5 (mol%) glass 

highly conductive new

crystalline phase

38 kJ mol-1

18 kJ mol-1

BM glass ion(RT) = 5.4  10−5 S cm−1

240 °C glass-ceramic ion(RT) = 2.2  10−3 S cm−1

360 °C glass-ceramic ion(RT) =3.2  10−3 S cm−1

550 °C Thio LISICON + Li4P2S6 ion(RT) = 1.1  10−6 S cm−1

Solid state : Li3PS4 + Li4P2S6 ion(RT) = 10−8 S cm−1

Glass-ceramic and superionic phase: Li7P3S11

RT
𝜎 = 𝐴. 𝑒𝑥𝑝 −

𝐸𝑎
𝑘. 𝑇
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Structural model of superionic Li7P3S11 crystal 

synchrotron X-ray powder diffraction pattern.

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

• Triclinic cell (space group P−1)

• Both PS4
3- tetrahedral and P2S7

4-ditetrahedral ions are 

contained in the structure and Li+ ions are situated between 

them. 

• The crystal structure is completely different from other 

superionic conducting crystals such as Li3.25Ge0.25P0.75S4and 

Li10GeP2S12, which are composed of only tetrahedral ions (PS4
3-

and GeS4
3-). 

• Favorable Li+ conduction path is presumably close to the Li–Li 

chains.

Li–Li correlations (solid blue lines) within 4 ˚A 

M. Tatsumisago, Journal of Asian Ceramic Societies 1 (2013) 17–25

Glass-ceramic and superionic phase: Li7P3S11
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Scalability of ball-milling process?

Compatibility with battery fabrication process?  

H. Liu, Particuology 57 (2021) 56–71

Solvent assisted synthesis

Application of solution-Processable SE for ASSB: impregnation

K. H. Park et al., Adv. Energy Mater. 2018, 8, 1800035

Assembling by wet-slurry process
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• Mixture of Li3PS4 and 50:50 Li2S-P2S5 powder obtained after drying ACN

• Formation of GC-Li7P3S11 after heating

• Formation of GC-Li7P3S11 requires T > 260 °C

Wang et al., Chem. Mater. 30 (3), 990, 2018

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Solvent Assisted Synthesis of GC-Li7P3S11
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• Below 260 °C, crystallization of β-Li3PS4

• T > 260 °C required for complete stoichiometric reaction and Li7P3S11 formation

PS4
3- P2S7

4-

PS4
3-

Wang et al., Chem. Mater. 30 (3), 990, 2018

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Solvent Assisted Synthesis of GC-Li7P3S11
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27
Hood et al., Solid State Ion., 61, 2016

*Busche et al., Chem, Mater., 28 (17), 6152, 2016

**Chen et al., Phys. Chem. Chem. Phys., 17, 16494, 2015 

Poor conductor

High Thermal Stability
Even in Air Atmosphere!
Unique

Thermally Stable unlike the Other LPS 
compounds:

(by DFT)**

(at 280 °C, inert atm.)*

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Thermal stability of Li7P3S11
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Electrochemical stability of Li7P3S11

Potentiostatic Cycling
Li-GC Li7P3S11-Li symmetric cell

Decreasing current over time 

• Increasing resistance

• Reaction at interfaces

Galvanostatic Cycling
Li metal - GC Li7P3S11 - (S & C & GC Li7P3S11)

Battery dies fast due to side 

reactions

Seino et al., J. Mater. Chem. A, 3, 2756, 2015 / Xu et al., J. Mater. Chem. A,  5, 2829, 2017

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

 Limited electrochemical stability

Cyclic voltammogram 
Stainless steel- GC Li7P3S11–Li metal

M. Tatsumisago, Journal of Asian Ceramic Societies 1 (2013) 17–25

cathodic current 

peak due to 

lithium deposition 

anodic current 

peak due to 

lithium 

dissolution

• No large current peak except Li peaks over 

the whole range from −0.1 V to 5.0 V.

 Wide electrochemical window of over 5 V 

 Good compatibility with lithium metal
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

- substitution engineering of O to S

- replacement of P and S elements with congeners, such as more

polarizable Sb and more stable O (theory of hard and soft acid−base (HSAB))

B.H. Zhao,  ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Li7P3S11

Li7P2.9Sb0.1S10.75O0.25

Sb O

Improvement of the stability of sulfide electrolytes

Li3PS4

Gc-Li3.2P0.8Sn0.2S4

Sn, Sb, Zn O

B.H. Zhao, Adv. Mater. 2021, 33, 2006577

Goal

• To increase the air-stability

• To improve the Li metal compatibility
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

- substitution engineering of O to S

- replacement of P and S elements with congeners, such as more

polarizable Sb and more stable O (theory of hard and soft acid−base (HSAB))

B.H. Zhao,  ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Congener Substitution Reinforced Li7P2.9Sb0.1S10.75O0.25 Glass-Ceramic Electrolytes for All-Solid-State Lithium−Sulfur Batteries

Li7P3S11

Li7P2.9Sb0.1S10.75O0.25

Sb O

Improvement of the stability of sulfide electrolytes

550 rpm

30 h 

RT

270 °C 

2 h

• Pure Li7P3S7 for x ≥ 0,10

• no diffraction peaks of Sb2O5

 Sb and O successfully incorporated
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Li7P3−xSbxS11−2.5xO2.5x

(x = 0, 0.04, 0.08, 0.1, 0.12, and 0.16)

Improvement of the stability of sulfide electrolytes

σ = A. exp −
Ea
k. T

B.H. Zhao,  ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Nyquist plots

SS/solid-state electrolyte/SS cells Arrhenius plots of ionic conductivity

•   from x=0 to x=0.1 then 

• ion for 0=0.10 is 2.2 times 

higher than that of the pristine 

Li7P3S11

X conductivity 

(σ, S cm−1) 

Ea (kJ mol−1)

0 7.26 × 10−4 30.3

0.04 9.06 × 10−4 28.5

0.08 1.04 × 10−3 28.4

0.10 1.61 × 10−3 26.6

0.12 1.22 × 10−3 28.1

0.16 8.98 × 10−4 29.3

• Smallest activation energy Ea

of x = 0.10, while the pristine

• Li7P3S11 electrolyte presents 

the largest Ea value

Li7P3S11

Li7P2.9Sb0.1S10.75O0.25

Sb O
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Quantity of H2S gas during air 

exposure
amount of H2S gas generated 

after 4000 s air exposure tests.

Li7P3−xSbxS11−2.5xO2.5x

(x = 0, 0.04, 0.08, 0.1, 0.12, and 0.16)

Improvement of the stability of sulfide electrolytes

B.H. Zhao,  ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Congener Substitution Reinforced Li7P2.9Sb0.1S10.75O0.25 Glass-Ceramic Electrolytes for All-Solid-State Lithium−Sulfur Batteries

• Water in humid air can hydrolyze sulfide electrolyte and produce harmful H2S, ultimately 

decomposing the electrolyte and reducing ionic conductivity.

• Amount of H2S gas generated is gradually increased during the exposure.

• Pristine Li7P3S11 electrolyte shows the fastest growing speed among all of the samples.

Li7P3S11

Li7P2.9Sb0.1S10.75O0.25

Sb O
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2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Improvement of the stability of sulfide electrolytes

B.H. Zhao,  ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Cyclic voltammograms of Li/solid electrolyte/Stainless steel cell

Li7P2.9Sb0.1S10.75O0.25

Li7P3S11 

Li7P3S11

0.2 mAcm−20.1 mAcm−2

Li7P2.9Sb0.1S10.75O0.25

small peak at 2.3 V 

(vs Li/Li+)

attributed to the 

oxidative 

decomposition of 

Li7P3S11

No other redox peaks except for the 

electrochemical deposition/dissolution of 

lithium 

 wide and stable electrochemical 

window of Li7P2.9Sb0.1S10.75O0.25

up to 5.0 V vs Li/Li+. 

Sudden drop of the 

voltage curve due 

to short circuit

caused by the 

formation of lithium 

dendrites in the cell 

with Li7P3S11

Steady stripping/plating behavior for 

for 62 h and lower overpotential 

(+0.023 and −0.022 V), 

 low interface resistance, 

 Good chemical/electrochemical 

stability of the Li7P2.9Sb0.1S10.75O0.25

 Suppression of lithium dendrites.

Galvanostatic charge/discharge curves of Li/solid electrolyte/Li cells

Li/solid electrolyte/Li cells Li-In/solid electrolyte/Li-In cells
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A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nature Communications 3 (2012) 

Article number: 856, 1-5. 

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Na ion conductors
Conductivities of several Na+ ion conductors

Na3PS4 glass 

() 

Na3PS4  

glass-ceramic 

prepared at 

270 °C (⚫) 

• Na3PS4 glass-ceramic higher conductivity than 

sulphide glasses and a Na3Zr2Si2PO12

NASICON crystal. 

• β-alumina (consisting of β and β″ phases) and 

a NASICON-type crystal (Ceramatec) have a 

higher conductivity of 10−3 S cm− 1 at RT but 

sintering at a high temperature of 1,800 °C 

needed to reduce the grain-boundary 

resistance for β-alumina. 

• Conductivity of the Na3PS4 glass-ceramic 

electrolyte one order of magnitude lower 

than that of sintered β-alumina and the 

NASICON-type crystal but good electrode–

electrolyte contact by simple cold pressing.
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A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, 

Nature Communications 3 (2012) Article number: 856, 1-5. 

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Na ion conductors

halo pattern in its X-ray 

diffraction (XRD) pattern

DTA 

Raman spectrum of the 

glass

Glass

(ball-

milling) 

Glass

Ceramic

420 °C 

tetragonal

single band at 420 cm−1, 

 ortho-thiophosphate ion (PS4
3−) 

Glass

Ceramic

270 °C

cubic

Crystal structure of Na3PS4 projected in the (010) plane 

T. Krauskopf, Inorg. Chem. 2018, 57, 4739−4744

- No occupancy of 

the 12d 

positions) 

- PS4
3− tetrahedra 

in a body 

centered lattice. 

- minor rotation of the

tetrahedra 

 splitting of the Na positions 

 elongation of the c-lattice 

parameter.

Tetragonal

Low-temperature phase
Cubic

High-temperature phase 
270 °C 420 °C 
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A. Hayashi, Nature Communications 3 (2012) Article number: 856, 1-5. 

2 Glasses and glass-ceramics for All-Solid-State Batteries (ASSB)

Na ion conductors

Glass

Ceramic

270 °C

Glass

Impedance plots 

5 μm

5 μm

Cross-sectional SEM images 

Na3PS4 glass-ceramic pellet

β-alumina

Glass: semicircle and a spike in the low-frequency region 

 typical ionic conductor.

 total conductivity includes the bulk-grain and grain-boundary resistances

Glass-ceramic: resistance of the pellet decreases by a factor of 30 on 

crystallization

Intimate contacts among 

particles achieved in the 

Na3PS4 glass-ceramic pellet

Grain-boundaries 

among particles clearly 

observed in the 

β-alumina pellet
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Performances of ASSB

Li-ion, Li-Sulfur and Na-ion batteries
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SEM pictures

M. Tatsumisago, Journal of Asian Ceramic Societies 1 (2013) 17–25.

F. Mizuno, Journal of the Electrochemical Society 152(8) (2005) A1499

LiCoO2 electrolyte 80Li2S-20P2S5

different 

conductive 

additives:
acetylene black VGCF

TiN
Ni 

3 Performances of All-Solid-State Batteries (ASSB)

Cathode composite

Solid electrolyte

Anode composite

Importance of:

• Conductive additives

• Active material

• Binders

• Formulation (ratios of  components)

• Mixting method (hand grinding, turbula,..)

Challenges for the ASSB assembling
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M. Tatsumisago, Journal of Asian Ceramic Societies 1 (2013) 17–25.

3 Performances of All-Solid-State Batteries (ASSB)

Li ion batteries: large choice of active materials
Four categories on the basis of cell potential:

(I) lithium transition-metal oxides and phosphates

with a potential of 3.5–5 V (⚫), 

category including high-potential positive electrodes:

LiCoO2, LiNiO2, LiNi0.8Co0.15Al0.05O2, LiNi0.33Co0.33Mn0.33O2, 

LiMn2O4, LiFePO4 and LiCoPO4.

(II) sulfur-based materials with 2 V (⚫),

(III) conversion-reaction materials with1–2 V (⚫), 

(IV) alloying reaction materials with below 1 V (⚫).
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difficult to scale up 

for practical applications

Solution processed

Yong-Sheng Hu, Nature Energy, Vol. 1, 2016, article number: 16042

powder pressing process 

Some alternative fabrication 

methods may be considered

pasting route analogous to that 

used in solid oxide fuel cell 

fabrication

process might be costly. 

3 Performances of All-Solid-State Batteries (ASSB)

Cathode composite

Solid electrolyte

Anode composite

Assembling processes

Investigation of solvents of polymer binders
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3 Performances of All-Solid-State Batteries (ASSB)

In

Charge–discharge curves at the 500th cycle of In/LiCoO2 cells 
with the 67Li2S·33PS2.5 (=80Li2S·20P2S5) glass-ceramic

In LiCoO2 

Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. 

T. Minami et al., Solid State Ionics 2006, 177, 2715–2720. 

 obtained In/LiCoO2 cells charged and discharged at room 

temperature in an Ar atmosphere (glove-box).

20 mg composite cathode

LiCoO2, glass-ceramics and acetylene-

black with the weight ratio of 20:30:3. 

80 mg glass-ceramics powder

acting as a solid electrolyte 

negative electrode 

indium foil with a thickness of 0.1 mm

pressed under 2.5×108 Pa on the pellet

• Irreversible capacity initially observed at the first few cycles, 

• The all-solid-state cell maintains the reversible capacity of 

about 100 mA.h g−1

Li-ion batteries
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Charge–discharge curves at the 500th cycle of In/LiCoO2 cells 
with the 67Li2S·33PS2.5 (=80Li2S·20P2S5) glass-ceramic

3 Performances of All-Solid-State Batteries (ASSB)

Retention of capacity over iterative cycling: Coulombic efficiency (CE)

= percent of specific discharge (A.h/kg or A.h/l) retained upon immediate 

subsequent charging. 

CE is always less than 100% for real SIBs 

(Lifetime of a SIB often defined as the number of cycles until the cell only 

demonstrates 80% of its initial capacity, so a cell which has a lifetime of 

500 cycles must have a CE of at least 99.96% for each cycle)

Battery’s performance evaluated based on:

Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. 

T. Minami et al., Solid State Ionics 2006, 177, 2715–2720. 

Charge–discharge efficiency of 100% (no irreversible capacity) 

for 500 cycles,

 the cell works as a lithium secondary battery without the 

decomposition of the glassy electrolyte.

Li-ion batteries
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Charge–discharge cycle performance 

of the all-solid-state Li–In/Li4Ti5O12 cell

M. Tatsumisago, M. Nagao, A. Hayashi, 

Journal of Asian Ceramic Societies 1 (2013) 17–25.

3 Performances of All-Solid-State Batteries (ASSB)

Li4Ti5O12

Commercialized negative electrode 

Moderate potential of 1.55 V (vs. Li+/Li) but “zero-strain” 

material during charge–discharge processes

Composite working electrode

= Li4Ti5O12, Li2S–P2S5 glass–ceramic SE, and vapor grown 

carbon fiber (VGCF) powders with a weight ratio of 38:58:4

Cycling at 100 ◦C! 

• Discharge and charge capacity of about 140 mAhg−1

• Capacity maintained for 700 cycles with no degradation 

under a high current density of over 10 mA cm−2. 

 all-solid-state batteries using glass–ceramic electrolytes 

have a benefit of high temperature application.

Li-ion batteries
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Initial discharge/charge cycles of Li−In/Li7P3S11/S−C and 

Li−In/Li7P2.9Sb0.1S10.75O0.25/S−C batteries at 0.05C rate

B.H. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Congener Substitution Reinforced Li7P2.9Sb0.1S10.75O0.25 Glass-Ceramic Electrolytes for All-Solid-State Lithium−Sulfur Batteries

3 Performances of All-Solid-State Batteries (ASSB)

One discharge and charge voltage plateau, corresponding to 

the reversible electrochemical reaction of S/Li2S without 

polysulfide intermediates.

Discharge capacity with the Li7P3S11 of 957.5 mAh g−1, 

while that of the one with the Li7P2.9Sb0.1S10.75O0.25

electrolyte can reach 1309.7 mAh g−1

 improved low interface resistance and ionic conductivity.

Li-sulfur batteries
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Rate performance of ASSLSBs with Li7P3S11 and 

Li7P2.9Sb0.1S10.75O0.25 electrolytes 

at 0.05C, 0.1C, 0.2C, 0.5C, and 1C rates.

B.H. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Congener Substitution Reinforced Li7P2.9Sb0.1S10.75O0.25 Glass-Ceramic Electrolytes for All-Solid-State Lithium−Sulfur Batteries

3 Performances of All-Solid-State Batteries (ASSB)

The rate at which SIB can deliver its energy often 

reported in terms of ‘C-rate.’ 

A c-rate of 1 C refers to the current density (mA/cm2) 

delivered by the battery at which the cell would deliver 

its entire theoretical capacity in a time interval of 1 h.  

Li-sulfur batteries

• Capacities decrease with increasing C-rate but 

when the rate is switched to 0.05C the 

capacities could recover to initial values

 good reversibility

• ASSLSBs with Li7P2.9Sb0.1S10.75O0.25 exhibit 

superior discharge capacities
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Cycling performance and Coulombic efficiency of ASSLSBs 

with Li7P3S11 and Li7P2.9Sb0.1S10.75O0.25 electrolytes at 0.05C rate

B.H. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 34477−34485

Congener Substitution Reinforced Li7P2.9Sb0.1S10.75O0.25 Glass-Ceramic Electrolytes for All-Solid-State Lithium−Sulfur Batteries

3 Performances of All-Solid-State Batteries (ASSB)

Li-sulfur batteries

• In the first cycle, large initial charge 

capacity and low initial Coulombic 

efficiency

 Unstable solid−solid interface 

between the cathode/anode and sulfide 

electrolyte 

• After the activation process, the 

battery can be charged/discharged 

normally with high Coulombic 

efficiency.

• Fast capacity decline for Li7P3S11

contrary to Li7P2.9Sb0.1S10.75O0.25
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3 Performances of All-Solid-State Batteries (ASSB)

Na batteries

The relationship between capacity and voltage for present 

electrode materials in Na-ion batteries

Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage

H. Pan, Energy Environ. Sci., 2013, 6, 2338
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3 Performances of All-Solid-State Batteries (ASSB)

Na batteries

Cathode composite

Chevrel phase Mo6S8 ∼1.4 V (vs Na/Na+) 

coated with a thin layer of Na3PS4

+ Na3PS4 glass-ceramic

+ Acetylene black

Anode composite

Na-Sn alloy

Acetylene black

Charge−discharge profiles 
at various current densities from 5 to 60 mA.g-1

• Decrease of the capacities with increasing currents

• The SE-coated Mo6S8 electrode delivers higher capacities than the 

bare Mo6S8 electrode at the same currents. 

 Enhanced rate performance of SE-coated Mo6S8

Bare Mo6S8
Mo6S8 coated with

Na3PS4

Long Cycle Life All-Solid-State Sodium Ion Battery

J. Yue,  ACS Appl. Mater. Interfaces 2018, 10, 39645−39650
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3 Performances of All-Solid-State Batteries (ASSB)

Cycling performances and Coulombic efficiencies of the Mo6S8 and SE-coated Mo6S8 cathodes 

in ASIBs at 60 mA.g−1 at 60 °C. 

• Limited potential (voltage range of 0.9−1.9 V) but high cycling performance (500 cycles)

• Thin layer of Na3PS4 coated on Mo6S8  solution method to achieve an intimate contact 

between Mo6S8 and the SE

voltage range of 0.9−1.9 V.

Na batteries

Long Cycle Life All-Solid-State Sodium Ion Battery

J. Yue,  ACS Appl. Mater. Interfaces 2018, 10, 39645−39650
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Conclusions and perspectives
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▪ Glass-ceramics

80-20 Li2S-P2S5

70-30 Li2S-P2S5

Li7P3S11

Argyrodite

▪ Superionic conductive crystal

Li7P3S11

Na3PS4

▪ Stable crystalline phase with lower Grain-

Boundary resistance

LATP

LAGP

New synthetic routes 

Since the 2000s

Melting

+ quenching

Ball-milling

thermal-image furnace 

and twin roller

Solvent assisted synthesis

▪ Air stability and Li metal compatibility in sulfide 

based solid electrolytes

P substitution by Sn, Sb and Zn

S substitution by O

4 Conclusion and perspectives

Glass and glass-ceramic solid electrolytes
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4 Conclusion and perspectives

Assembling processes

Large choice of 

active materials

Different technologies

Na

Li

Li-S

Cycling possible at high 

temperature

Scalability

Challenges for the ASSB assembling

powder pressing process 

Solution processed

Strategies to improve interface (coating)
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4 Conclusion and perspectives

Solid 

electrolytes 

suppliers

https://ampcera.com/
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Conclusion and Perspectives

https://solidpowerbattery.com/

Company Profiles Key Players

• Toyota Motor Corporation
• Solid Power
• Quantumscape
• Samsung Sdi
• LG Chem
• Ilika
• Brightvolt
• Panasonic
• Catl
• Ioniq Materials
• Northvolt
• Cymbet

(CAGR) compounded annual growth rate

4 Conclusion and perspectives

Developers of solid-state batteries
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In addition to the references already given at the bottom of the slide

Emerging Role of Non-crystalline Electrolytes in Solid-State Battery Research

Zane A. Grady et al,. Frontiers in Energy Research,   Volume 8, Article 218, 2020

Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing

Tomasz K. Pietrzak et al., Nanomaterials 2021, 11, 1321

Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries

Jin An Sam Oh et al., Energy Storage Materials 34 (2021) 28–44

Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes

Abhik Banerjee et al., 
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APPLICATION: MATERIALS FOR ENERGY
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Thanks for your attention


