

GLASS (AND GLASS-CERAMICS) FOR BATTERIES

Virginie VIALLET

LRCS - Hub de l'énergie (Amiens) Université Picardie Jules Verne

LRCS – HUB of Energy

Amiens city

140 km north of Paris

May 01, 2024 ICG Spring School 2024

LRCS - Hub de l'énergie (Amiens) Université Picardie Jules Verne

UMR (Mixed Research Unit)

Hub de l'énergie

National Network RS2E : Network on Electrochemical Energy Storage

17 research laboratories

15 industrial partners

3 public establishments of an industrial and commercial nature

TOTAL = 136 persons

42 Permanents

75 non-permanents + 19 companies

OUTLINE

Batteries: from liquid to solid electrolyte

- I.I. Batteries for renewable energy storage
- I.2. Limitations of traditional Li-ion batteries
- I.3. Advantages and challenges of All-Solid-State Batteries (ASSB)

2 3 Glasses and glass-ceramics for Li-ion ASSB 2.1. Solid electrolytes (SE) 2.2. All-Solid-State Batteries (ASSB)

Na-based ASSB Cathode active materials and solid electrolytes

Conclusions and perspectives

- I.I. Batteries for renewable energy storage
- I.2. Limitations of traditional Li-ion batteries
- I.3. Advantages and challenges of All-Solid-State Batteries (ASSB)

1.2. Limitations of traditional Li-ion batteries

I.2. Limitations of traditional Li-ion batteries

Poster 6 (Guyot Taos) - Cathode properties of Iron Based Oxide Glasses for Sustainable and High-Energy Density Lithium-ion Batteries

Glassy Cathode:

- Wide range of chemical compositions
- Accommodation of structural changes upon lithium ions extraction and insertion
- Glass production scalable and commercially easier to implement

1.2. Limitations of traditional Li-ion batteries

Deformation and ignition due to overheating.

- Leakage of liquid electrolyte.
- Limitation of Voltage

Électrolyte Séparateu Anode (-) Electrolyte Cathode (+) **Commonly used solvents Commonly used salts** Li hexafluorophosphate (LiPF₄) Linear Solvents : Diethyl Carbonate (DEC) Li fluroroborate (LiBF₄) Dimethyl Carbonate (DMC) Li Perchlorate (LiClO₄) -Ethyl Methyl Carbonate (EMC) -Li hexafluoroarsenate (LiAs F_6) Cvclic Solvents : Ethylene Carbonate (EC) Propylene Carbonate (PC) Butylene Carbonate (BC) γ – butyrolactone (GBL) May 01, 2024 ICG Spring School 2024

I.3. Advantages and challenges of All-Solid-State Batteries (ASSB)

Solid state battery with a lithium-metal anode

- Interfaces optimization
- Solid electrolyte

process of industrialization is still limited by technological, marketing and financial factors.

Pros... And Cons...

On the technological side, the research of SSE synthesis method, stability, conductivity and interfacial properties is the key to practical application.

electric resistance between electrolytes and electrode materials is large because of the limited contact area \Rightarrow solid composite electrodes ensuring sufficient electronic and ionic percolation have to be formed

J. Janek & W. G. Zeier, Nature Energy, Vol. 1, 2016

Glasses and glass-ceramics for Li-ion ASSB 2.1. Solid electrolytes (SE) Oxides Sulfides 2.2. All-Solid-State Batteries (ASSB)

Which ionic conductors?

May 01, 2024 ICG Spring School 2024 S. Liu et al, J. Mater. Chem. C, 2019, 7, 15118-15135

Two main types

Inorganic solids (crystalline, glass or glass-ceramics)

Oxides and phosphates

Uuq

(289)

Uub (285)

Sulfides are ductile easily form dense cathode and anode

- But moisture sensitive: partial hydrolysis & H₂S toxic gas

Chalcogenides

Mostly sulfides

Intensively studied

- \Rightarrow lonic conductivity drop
- \Rightarrow Safety problems

ICG Spring School 2024 May 01, 2024

- Brittle

interest of glasses compared to crystallized phases

polycrystalline ceramic

For polycrystalline ceramic SSEs, the Li^+ transport mechanism depends on three factors:

-carrier type,

- diffusion pathways and

- diffusion type.

The carrier type and concentration are determined by the point defects in the polycrystalline ceramic structure, which directly affect the ionic conductivity.

The interactions between Li ions during migration in the crystal and between ones and the surrounding environment will significantly affect the ionic conductivity. glass

Compared to ceramic SSEs, amorphous (glass) SSEs:

- have better flexibility, uniformity and density.

- show no grain boundary resistance and isotropic Li⁺ mobility.

These properties of glass SSEs have prompted attempts to find its ionic conduction mechanism.

At present, although many experimental data on Li⁺ conduction in glass SSEs are available, the Li⁺ conduction mechanism in glass SSEs is still not well explained, and no relevant general theory has been established.

Casasola, R., Rincón, J. M., & Romero, M. (2012). Glass–ceramic glazes for ceramic tiles: a review. Journal of Materials Science, 47, 553-582.

Glasses and glass-ceramics for Li-ion ASSB 2.1. Solid electrolytes (SE) Oxides Sulfides 2.2. All-Solid-State Batteries (ASSB)

Oxide Glass and Glass ceramic systems

From ceramic...

Most of the oxide SSEs are polycrystalline ceramic SSEs whose advantages are:

- high ionic conductivity,
- high mechanical strength and
- a wide electrochemical stability window.

However, the interface problem between this type of SSEs and electrodes is more prominent.

garnet-type Li-ion electrolytes based on cubic Li₇La₃Zr₂O₁₂ (LLZO) most appealing candidate Cathode Separator/SEs composite

Interfacial Issues in ASSB

Grain boundary formation Between SEs particles or SEs-Active material

Void and contact issues Increased resistance and volume

May 01, 2024 ICG Spring School 2024

24

Oxide Glass and Glass ceramic systems

From ceramic...

Most of the oxide SSEs are polycrystalline ceramic SSEs whose advantages are:

However, the interface problem between this type

- high ionic conductivity,
- high mechanical strength and
- a wide electrochemical stability window.

of SSEs and electrodes is more prominent.

to glass and glass ceramic

advantages in terms of:

- -flexibility,
- -homogeneity and
- density.

Therefore, glass-ceramic SSEs are prepared by melting-quenching and partial crystallization of glass, which not only improve the ionic conductivity but also optimize the interface between SSEs and electrodes to some extent.

Oxide Glass and Glass ceramic systems

No glass used in All-Solid-State Batteries

Only Glass-ceramics

Lithium analogues of NASICON-type compounds are heavily investigated as promising SSEs for ASSLIBs

Melt quenching method

- (1) Mixture of raw materials melted at high temperature:
- (2) Rapid cooling to form the parent glass
- (3) Annealing to release stress
- (4) Heat treatment to nucleate and grow NASICON crystals in the glass (nucleation agents often added)
- (5) Mechanical Ball Milling to obtain nano-size glass or glass ceramic material

Mainly Two NASICON-type compounds studied

LATP Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ LGTP Li_{1.5}Ge_{0.5}Ti_{1.5}(PO₄)₃

May 01, 2024 ICG Spring School 2024

NASICON structure

NaM₂(PO₄)₃ [M⁴⁺], e.g., Ge, Ti, Sn and Zr. Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (0 < x < 3) NASICON

Blue octahedra are MO_6 units, Purple tetrahedra are PO_4 units, green spheres are MI sites and yellow spheres are M2 sites

Stable crystalline phase with lower Grain-Boundary resistance

 $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3 \sigma_{glass-ceramic}$ about 1×10^{-4} Scm⁻¹ > $\sigma_{ceramic}$ 6 × 10⁻⁵ Scm⁻¹ > σ_{glass} 10⁻¹⁰ - 10⁻⁸ Scm⁻¹

27

Stable crystalline phase with lower Grain-Boundary resistance

S. Duan, Journal of Power Sources, Volume 449, 15 February 2020, 227574 May 01, 2024 ICG Spring School 2024

Arrhenius plots of bulk conductivity

$$\sigma.T = A. \exp\left(-\frac{E_a}{k_B.T}\right)$$

T Absolute temperature k Boltzmann constant A Pre-exponential factor

- grain boundary resistance of Ceramics, which also increases when boron is added
- inhomogeneous distribution of boron and glassified grain boundaries in Glass-Ceramics
- \Rightarrow reduces interfacial resistance at grain boundaries
- \Rightarrow higher conductivity in glass-ceramics, while boron can relax their grain boundaries even further.

Oxide Glass and Glass ceramic systems

Review of various parameters of NASICON-type glass ceramic materials prepared by melt-quenching method

Composition	Tg (°C)	Tc (°C)	Crystallization	σ (S·cm ⁻¹)	E _a (eV)
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃	624	660	1000 °C/0.33 h	$1.3 imes10^{-3}$	0.27
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃	640	670	950 °C/70 h	1.23×10^{-4}	0.37
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ -50P ₂ O ₅	632	750	850 °C/10 h	$8.5 imes 10^{-4}$	0.26
Li _{1.4} Al _{0.4} Ge _{1.6} (PO ₄) ₃	534	614	650 °C/96 h	$3.8 imes10^{-5}$	0.52
Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃	508.4	598.4	820 °C/2 h	5.03×10^{-4}	0.36
Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃	524	589	800 °C/8 h	2.9×10^{-3}	0.29
Li _{1.25} Al _{0.25} Sn _{0.25} Ge _{1.75} (PO ₄) ₃	518	622	628 °C/1 h	$3.9 imes 10^{-5}$	0.36
Li _{1.5} Al _{0.33} Sc _{0.17} Ge _{1.5} (PO ₄) ₃			800 °C/8 h	5.8×10^{-3}	0.28
Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ + 0.05Li ₂ O	532	629	829 °C/6 h	$7.3 imes 10^{-4}$	0.38
Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ -0.05B ₂ O ₃	526.0	636.4	820 °C/2 h	5.5×10^{-4}	
Li _{1.4} Cr _{0.4} Ge _{0.64} Ti _{0.96} (PO ₄) ₃	623	692	900 °C/12 h	6.6×10^{-5}	0.40
$Li_{1.6}Cr_{0.6}Ge_{0.28}Ti_{1.12}(PO_4)_3$	682.5	725.8	900 °C/2 h	$2.9 imes 10^{-4}$	0.26

 \Rightarrow melt-quenching method still the mainstream preparation today

L. Lin, Materials **2023**, 16, 2655

Glasses and glass-ceramics for Li-ion ASSB 2.1. Solid electrolytes (SE) Oxides Sulfides 2.2. All-Solid-State Batteries (ASSB)

From glass to glass-ceramic: 70Li₂S-30P_SS₅

DTA curve for the $70Li_2S \cdot 30P_2S_5$ (mol %) mechanically milled sample.

Mechanical milling Li₂S+P₂S₅

Temperature dependences of the conductivities for $xLi_2S \cdot 100 - xP_2S_5$ mol % glass-ceramics with several compositions (Tc <T < 260°C)

 Highest conductivities with x = 70 and 80: glass-ceramic thio-LISICON II or III analog, 10⁻⁴ S cm⁻¹.

F. Mizuno, Electrochemical and Solid-State Letters, 8 (11) A603-A606 (2005) New Lithium-Ion Conducting Crystal Obtained by Crystallization of the Li₂S–P₂S₅ Glasses

May 01, 2024 ICG Spring School 2024

•

Glass-ceramic and superionic phase: Li₇P₃S₁₁

٨

ЕX0.

Endo.

•

DTA curve for the $70Li_2S \cdot 30P_2S_5$ (mol %) mechanically milled sample.

Mechanical milling $Li_2S+P_2S_5$

 AI_2O_3 balls and pot 20 h at 370 rpm

XRD patterns of the 70Li₂S ·30P₂S₅ (mol %)

glass-ceramics obtained by heating the glasses

May 01, 2024 ICG Spring School 2024

32

Glass-ceramic and superionic phase: Li₇P₃S₁₁

 $70Li_2S \cdot 30P_2S_5 \pmod{9}$ glass

temperature dependence of conductivities for the $70Li_2S \cdot 30P_2S_5$ (mol%) glass and glass-ceramics

F. Mizuno, Electrochemical and Solid-State Letters, 8 (11) A603-A606 (2005)

Glass-ceramic and superionic phase: Li₇P₃S₁₁

Structural model of superionic $Li_7P_3S_{11}$ crystal

Li–Li correlations (solid blue lines) within 4 Å

- Triclinic cell (space group P-I)
- Both PS₄³⁻ tetrahedral and P₂S₇⁴⁻ ditetrahedral ions are contained in the structure and Li⁺ ions are situated between them.
- The crystal structure is completely different from other superionic conducting crystals such as $Li_{3.25}Ge_{0.25}P_{0.75}S_4$ and $Li_{10}GeP_2S_{12}$, which are composed of only tetrahedral ions (PS_4^{3-} and GeS_4^{3-}).
- Favorable Li⁺ conduction path is presumably close to the Li–Li chains.

Scalability of ball-milling process? Compatibility with battery fabrication process?

Assembling by wet-slurry process

Solvent Assisted Synthesis of GC-Li₇P₃S₁₁

- Mixture of Li_3PS_4 and 50:50 $Li_2S-P_2S_5$ powder obtained after drying ACN
- Formation of GC-Li₇P₃S₁₁ after heating
- Formation of GC-Li₇P₃S₁₁ requires $T > 260 \degree C$

Wang et al., Chem. Mater. 30 (3), 990, 2018

- Below 260 °C, crystallization of β -Li₃PS₄
- T > 260 °C required for complete stoichiometric reaction and $Li_7P_3S_{11}$ formation

Wang et al., Chem. Mater. 30 (3), 990, 2018

- substitution engineering of O to S

- replacement of P and S elements with congeners, such as more polarizable Sb and more stable O (theory of hard and soft acid-base (HSAB))

$$\begin{array}{c} \text{Li}_{3}\text{PS}_{4} & \text{Li}_{7}\text{P}_{3}\text{S}_{11} \\ \text{Sn, Sb, Zn} & \text{Sb} & \downarrow 0 \\ \text{Gc-Li}_{3.2}\text{P}_{0.8}\text{Sn}_{0.2}\text{S}_{4} & \text{Li}_{7}\text{P}_{2.9}\text{Sb}_{0.1}\text{S}_{10.75}\text{O}_{0.25} \end{array}$$

B.H. Zhao, Adv. Mater. 2021, 33, 2006577

B.H. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 34477-34485

Goal

- To increase the air-stability
- To improve the Li metal compatibility

- substitution engineering of O to S - replacement of P and S elements with congeners, such as more $Li_7P_{2,9}Sb_{0,1}S_{10,75}O_{0,25}$ polarizable Sb and more stable O (theory of hard and soft acid-base (HSAB)) a b ▼ Li₇P₃S₁₁ ● Li₄P₂S₆ 408 386 P2S64-PS43 X=0 O Li Sb O O S P X=0 x = 0Intensity Intensity X=0.04 X=0.04 x = 0.04Li,S **Ball mill** Assemble X=0.08 X=0.08 x = 0.08X=0.10 Batterv X=0.10 Heat x = 0.11 1 X=0.12 X=0.12 270 °C x = 0.12X=0.16 X=0.16 2 h Li₇P_{2.9}Sb_{0.1}S_{10.75}O_{0.25} x = 0.16P2574 550 rpm 30 h 20 30 40 50 60 70 500 450 400 350 300 10 80 20(°) Raman shift (cm-1) RT $Li_7P_{3-x}Sb_xS_{11-2}S_xO_{2}S_x$ Pure $Li_7P_3S_{11}$ for $x \ge 0,10$ (x = 0, 0.04, 0.08, 0.1, 0.12, and 0.16)no diffraction peaks of Sb_2O_5 \Rightarrow Sb and O successfully incorporated

Congener Substitution Reinforced Li₇P_{2.9}Sb_{0.1}S_{10.75}O_{0.25} Glass-Ceramic Electrolytes for All-Solid-State Lithium–Sulfur Batteries May 01, 2024 ICG Spring School 2024

 $Li_7P_3S_{11}$

Sb

B.H. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 34477-34485

May 01, 2024 ICG Spring School 2024

40

 $Li_7P_3S_{11}$

0

Ea (kJ mol⁻¹)

30.3

28.5

28.4

26.6

28.1

29.3

Sb

conductivity

 $(\sigma, S \text{ cm}^{-1})$

7.26 × 10⁻⁴

 9.06×10^{-4}

 1.04×10^{-3}

 $|.6| \times |0^{-3}|$

 1.22×10^{-3}

 8.98×10^{-4}

- Water in humid air can hydrolyze sulfide electrolyte and produce harmful H_2S , ultimately decomposing the electrolyte and reducing ionic conductivity.
- Amount of H_2S gas generated is gradually increased during the exposure.
- Pristine $Li_7P_3S_{11}$ electrolyte shows the fastest growing speed among all of the samples.

B.H. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 34477-34485

Congener Substitution Reinforced Li₇P_{2.9}Sb_{0.1}S_{10.75}O_{0.25} Glass-Ceramic Electrolytes for All-Solid-State Lithium–Sulfur Batteries May 01, 2024 ICG Spring School 2024

Glasses and glass-ceramics for Li-ion ASSB 2.1. Solid electrolytes (SE) Oxides Sulfides 2.2. All-Solid-State Batteries (ASSB)

May 01, 2024 ICG Spring School 2024

43

Sulfides are ductile

cathode and anode

than with sulfides

far fewer examples of all-

solid batteries with oxides

easily form dense

composites

Assembling processes

powder pressing process (lab scale)

difficult to scale up for practical applications

Some alternative fabrication methods may be considered

Yong-Sheng Hu, Nature Energy, Vol. 1, 2016, article number: 16042

May 01, 2024 ICG Spring School 2024

Cathode composite

Solid electrolyte Anode composite

Solution processed (industrial scale)

Investigation of solvents of polymer binders

Solution pro

Li ion batteries: large choice of active materials Four categories on the basis of cell potential:

M. Tatsumisago, Journal of Asian Ceramic Societies I (2013) 17-25.

May 01, 2024 ICG Spring School 2024

46

Charge–discharge curves at the 500^{th} cycle of In/LiCoO₂ cells with the $80Li_2S \cdot 20P_2S_5$ glass-ceramic

Li-ion batteries

negative electrode indium foil with a thickness of 0.1 mm pressed under 2.5×10⁸ Pa on the pellet

80 mg glass-ceramics powder acting as a solid electrolyte

20 mg composite cathode $LiCoO_2$, glass-ceramics and acetyleneblack with the weight ratio of 20:30:3.

47

 \Rightarrow obtained In/LiCoO₂ cells charged and discharged at room temperature in an Ar atmosphere (glove-box).

- Irreversible capacity initially observed at the first few cycles,
- The all-solid-state cell maintains the reversible capacity of about 100 mA.h g⁻¹

Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. T. Minami et al., Solid State Ionics 2006, 177, 2715–2720.

May 01, 2024 ICG Spring School 2024

Charge–discharge curves at the 500^{th} cycle of In/LiCoO₂ cells with the $80Li_2S \cdot 20P_2S_5$ glass-ceramic

Li-ion batteries

Battery's performance evaluated based on:

Retention of capacity over iterative cycling: Coulombic efficiency (CE) = percent of specific discharge (A.h/kg or A.h/l) retained upon immediate subsequent charging.

CE is always less than 100% for real SIBs

(Lifetime of a SIB often defined as the number of cycles until the cell only demonstrates 80% of its initial capacity, so a cell which has a lifetime of 500 cycles must have a CE of at least 99.96% for each cycle)

Charge–discharge efficiency of 100% (no irreversible capacity) for 500 cycles,

 \Rightarrow the cell works as a lithium secondary battery without the decomposition of the glassy electrolyte.

Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. T. Minami et al., Solid State Ionics 2006, 177, 2715–2720.

May 01, 2024 ICG Spring School 2024

Charge-discharge cycle performance of the all-solid-state Li-In/ $Li_4Ti_5O_{12}$ cell

M. Tatsumisago, M. Nagao, A. Hayashi, Journal of Asian Ceramic Societies 1 (2013) 17–25.

Li-ion batteries

Li₄Ti₅O₁₂

Commercialized negative electrode Moderate potential of 1.55 V (vs. Li⁺/Li) but "zero-strain" material during charge–discharge processes

Composite working electrode = $Li_4Ti_5O_{12}$, $Li_2S-P_2S_5$ glass-ceramic SE, and vapor grown carbon fiber (VGCF) powders with a weight ratio of 38:58:4

Cycling at 100 °C!

- Discharge and charge capacity of about 140 mAhg⁻¹
- Capacity maintained for 700 cycles with no degradation under a high current density of over 10 mA cm⁻².

 \Rightarrow all-solid-state batteries using glass–ceramic electrolytes have a benefit of high temperature application.

3 Na-based All-Solid-State Batteries Cathode active materials and solid electrolytes

May 01, 2024 ICG Spring School 2024

LI-SSB

By 2030, batteries are expected to account for 95 percent of lithium demand, and total needs will grow annually by 25 to 26 percent to reach 3.3 million to 3.8 million metric tons LCE

- forecasted demand and supply indicates a balanced industry for the short term
- potential need to galvanize new capacity by 2030:
 Additional lithium sources required to bridge the supply gap
- new technologies such as DLE and DLP are expected to boost recovery and capacity.

May 01, 2024 ICG Spring School 2024

McKinsey: Lithium Mining, How new production technologies could fuel the global EV revolution (April 2022)

From Lithium to sodium

Element abundance in Earth's crust

large-scale applications of LIBs in portable electronics and electric vehicles (EV) market + application of LIBs in stationary energy storage

 \Rightarrow uneconomical in the near future.

ICG Spring School 2024

May 01, 2024

- \Rightarrow increase of price of Li resources due:
- to its low abundance in the Earth's crust
- and its non-uniform geographic distribution

The world distribution of lithium resource

development of lowcost, highly-safe and cycling stable rechargeable batteries based on abundant resources is becoming urgent and highly desired.

 \Rightarrow Na

3 Na-based All-Solid-State Batteries

From Lithium to sodium with liquid based batteries

Sodium-ion batteries (SIBs):

- large energy density of \sim 150 Wh kg⁻¹,

 \Rightarrow currently attracting the attention of both academic and industrial research communities due to their potential for meeting the growing needs of the grid and transportation sectors

Sodium-ion battery technology was discovered in the early 1970 and 80s, but it is less popular compared to current lithium-ion battery technology due to poor energy density and low cycle stability of SIBs, which hinders their practical application.

SIBs are the best alternative choice to LIBs because of:

- (i) SIBs and LIBs sharing the similar operating principle,
- (ii) cheaper and abundant raw materials,
- (iii) water-based electrolytes
- (iv) replace the cupper collectors with aluminum collectors, and
- (v) stable electrochemical potential window (-2.71 V vs. SHE)

construction of the Mega factory near Amiens by 2025

Na batteries

The relationship between capacity and voltage for present electrode materials in Na-ion batteries

Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage H. Pan, Energy Environ. Sci., 2013, 6, 2338

evolution of variable

cathodes in terms of

superior mechanical

- good formability,

alkali metal cation

properties,

stability,

glassy phases

-

From Lithium to sodium with liquid based batteries, with glassy and glass ceramic cathodes

Comparison of the electrochemical performance of glass and glass ceramic cathode materials to the mainstream cathode

Excellent operating potential of glass and glass-ceramic compounds results in high energy density and specific capacity as well as strong compatibility with the anode due to the high operational potential of the materials.

changes upon dissolution of

From Lithium to sodium with liquid based batteries, with glassy and glass ceramic cathodes

May 01, 2024 ICG Spring School 2024

glass and glass-ceramic cathode materials tested in SIBs

S. Gandi et al., Journal of Power Sources 521 (2022) 230930 57

Na ion conductors

- β-alumina (consisting of β and β" phases) and a NASICON-type crystal (Ceramatec) have a higher conductivity of 10⁻³ S cm⁻¹ at RT but sintering at a high temperature of 1,800 °C needed to reduce the grain-boundary resistance for β-alumina.
- Conductivity of the Na₃PS₄ glass-ceramic electrolyte one order of magnitude lower than that of sintered β -alumina and the NASICON-type crystal but good electrode– electrolyte contact by simple cold pressing.
- Na₃PS₄ glass-ceramic exhibits higher conductivity than sulfide glasses and a Na₃Zr₂Si₂PO₁₂ NASICON crystal.

ICG Spring School 2024

May 01, 2024

A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nature Communications 3 (2012) Article number: 856, 1-5.

All-Solid-State Batteries with oxide electrolyte

quick charge and discharge capabilities that can operate not only at room temperature (30 $^{\circ}$ C) but also at -20 $^{\circ}$ C.

Nature Communications 3 (2012) Article number: 856, 1-5.

May 01, 2024 ICG Spring School 2024

T. Krauskopf, Inorg. Chem. 2018, 57, 4739–4744

All-Solid-State Batteries with sulfide electrolyte Cross-sectional SEM images

A. Hayashi, Nature Communications 3 (2012) Article number: 856, 1-5.

Na ion conductors

Cathode composite

Chevrel phase $Mo_6S_8 \sim 1.4V$ (vs Na/Na⁺) coated with a thin layer of Na₃PS₄

- + Na₃PS₄ glass-ceramic
- + Acetylene black

Anode composite Na-Sn alloy Acetylene black

May 01, 2024 ICG Spring School 2024

Na batteries

- Decrease of the capacities with increasing currents
- The SE-coated Mo_6S_8 electrode delivers higher capacities than the bare Mo_6S_8 electrode at the same currents.
- \Rightarrow Enhanced rate performance of SE-coated Mo₆S₈

3 Na-based All-Solid-State Batteries

Na ion conductors

Na batteries

Cycling performances and Coulombic efficiencies of the Mo_6S_8 and SE-coated Mo_6S_8 cathodes in ASIBs at 60 mA.g⁻¹ at 60 °C.

- Thin layer of Na_3PS_4 coated on Mo_6S_8 $\Rightarrow\,$ solution method to achieve an intimate contact between Mo_6S_8 and the SE

May 01, 2024 ICG Spring School 2024

Long Cycle Life All-Solid-State Sodium Ion Battery J.Yue, ACS Appl. Mater. Interfaces 2018, 10, 39645–39650

4 Conclusions and perspectives

Reduce CO₂ emission Energy storage from renewable energie

Batteries Limitation of traditional Li-Ion batteries	All-Solid-State batteries Li-Ion batteries Li metal (3860 mAh g ⁻¹) Solid state electrolyte: wider potential window: High potential material Higher energy density Safety

Solid electrolytes: glass, glass ceramics and crystalline phases

Oxides

Sulfides

All-Solid-State Batteries

No glass used in All-Solid-State Batteries Only Glass-ceramic

4 Conclusion and perspectives

4 Conclusion and perspectives

Challenges for the ASSB assembling

Large choice of active materials

Different technologies Na Li (Li-S)

Assembling processes

powder pressing process

Cycling possible at high temperature

Strategies to improve interface (coating)

Machine learning (coating, formulation, electrolyte)

Poster 12 (Sajid Mannan) - Deciphering Glass Dissolution Rates: A Machine Learning Perspective for Prediction and Interpretation May 01, 2024 ICG Spring School 2024

Solution processed Electrode slurry Current collector (+) Current collector (+) Current collector (+) Electrolyte slurry Current collector (-) Current collector (-)

Bibliography In addition to the references already given at the bottom of the slide

Emerging Role of Non-crystalline Electrolytes in Solid-State Battery Research Zane A. Grady et al, Frontiers in Energy Research 8 (2020): 218

Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing Tomasz K. Pietrzak et al., Nanomaterials-Basel. 11 (2021) 1321

Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries Jin An Sam Oh et al., Energy Storage Materials 34 (2021): 28-44.

Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes Abhik Banerjee et al., Chemical reviews 120.14 (2020): 6878-6933.

Progress and perspective of glass-ceramic solid-state electrolytes for lithium batteries. Liyang Lin et al., Materials 16.7 (2023): 2655.

Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review. Suman Gandi et al., Journal of Power Sources 521 (2022): 230930.

